-
Global research of artificial intelligence in strabismus: a bibliometric analysis.
To analyze the global publications on artificial intelligence (AI) in strabismus using a bibliometric approach.
The Web of Science Core Collection (WoSCC) database was used to retrieve all of the publications on AI in strabismus from 2002 to 2023. We analyzed the publication and citation trend and identified highly-cited articles, prolific countries, institutions, authors and journals, relevant research domains and keywords. VOSviewer (software) and Bibliometrix (package) were used for data analysis and visualization.
By analyzing a total of 146 relevant publications, this study found an overall increasing trend in the number of annual publications and citations in the last decade. USA was the most productive country with the closest international cooperation. The top 3 research domains were Ophthalmology, Engineering Biomedical and Optics. Journal of AAPOS was the most productive journal in this field. The keywords analysis showed that "deep learning" and "machine learning" may be the hotspots in the future.
In recent years, research on the application of AI in strabismus has made remarkable progress. The future trends will be toward optimized technology and algorithms. Our findings help researchers better understand the development of this field and provide valuable clues for future research directions.
Zhou Z
,Zhang X
,Tang X
,Grzybowski A
,Ye J
,Lou L
... -
《Frontiers in Medicine》
-
Research Trends in the Application of Artificial Intelligence in Oncology: A Bibliometric and Network Visualization Study.
The past decade has seen major advances in the use of artificial intelligence (AI) to solve various biomedical problems, including cancer. This has resulted in more than 6000 scientific papers focusing on AI in oncology alone. The expansiveness of this research area presents a challenge to those seeking to understand how it has developed. A scientific analysis of AI in the oncology literature is therefore crucial for understanding its overall structure and development. This may be addressed through bibliometric analysis, which employs computational and visual tools to identify research activity, relationships, and expertise within large collections of bibliographic data. There is already a large volume of research data regarding the development of AI applications in cancer research. However, there is no published bibliometric analysis of this topic that offers comprehensive insights into publication growth, co-citation networks, research collaboration, and keyword co-occurrence analysis for technological trends involving AI across the entire spectrum of oncology research. The purpose of this study is to investigate documents published during the last decade using bibliometric indicators and network visualization. This will provide a detailed assessment of global research activities, key themes, and AI trends over the entire breadth of the oncology field. It will also specifically highlight top-performing authors, organizations, and nations that have made major contributions to this research domain, as well as their interactions via network collaboration maps and betweenness centrality metric. This study represents the first global investigation of AI covering the entire cancer field and using several validated bibliometric techniques. It should provide valuable reference material for reorienting this field and for identifying research trajectories, topics, major publications, and influential entities including scholars, institutions, and countries. It will also identify international collaborations at three levels: micro (that of an individual researcher), meso (that of an institution), and macro (that of a country), in order to inform future lines of research.
The Science Citation Index Expanded from the Web of Science Core Collection was searched for articles and reviews pertaining exclusively to AI in cancer from 2012 through 2022. Annual publication trends were plotted using Microsoft Excel 2019. CiteSpace and VOSViewer were used to investigate the most productive countries, researchers, journals, as well as the sharing of resources, intellectual property, and knowledge base in this field, along with the co-citation analysis of references and keywords.
A total of 6757 documents were retrieved. China produced the most publications of any country (2087, 30.89%), and Sun Yat Sen University the highest number (167, 2.47%) of any institute. WEI WANG was the most prolific author (33, 0.49%). RUI ZHANG ranked first for highest betweenness centrality (0.21) and collaboration criteria. Scientific Reports was found to be the most prolific journal (208, 3.18%), while PloS one had the most co-citations (2121, 1.55%). Strong and ongoing citation bursts were found for keywords such as "tissue microarray", "tissue segmentation", and "artificial neural network".
Deep learning currently represents one of the most cutting-edge and applicable branches of AI in oncology. The literature to date has dealt extensively with radiomics, genomics, pathology, risk stratification, lesion detection, and therapy response. Current hot topics identified by our analysis highlight the potential application of AI in radiomics and precision oncology.
Wu T
,Duan Y
,Zhang T
,Tian W
,Liu H
,Deng Y
... -
《-》
-
Global research of artificial intelligence in eyelid diseases: A bibliometric analysis.
To generate an overview of global research on artificial intelligence (AI) in eyelid diseases using a bibliometric approach.
All publications related to AI in eyelid diseases from 1900 to 2023 were retrieved from the Web of Science (WoS) Core Collection database. After manual screening, 98 publications published between 2000 and 2023 were finally included. We analyzed the annual trend of publication and citation count, productivity and co-authorship of countries/territories and institutions, research domain, source journal, co-occurrence and evolution of the keywords and co-citation and clustering of the references, using the analytic tool of the WoS, VOSviewer, Wordcloud Python package and CiteSpace.
By analyzing a total of 98 relevant publications, we detected that this field had continuously developed over the past two decades and had entered a phase of rapid development in the last three years. Among these countries/territories and institutions contributing to this field, China was the most productive country and had the most institutions with high productivity, while USA was the most active in collaborating with others. The most popular research domains was Ophthalmology and the most productive journals were Ocular Surface. The co-occurrence network of keywords could be classified into 3 clusters respectively concerned about blepharoptosis, meibomian gland dysfunction and blepharospasm. The evolution of research hotspots is from clinical features to clinical scenarios and from image processing to deep learning. In the clustering analysis of co-cited reference network, cluster "0# deep learning" was the largest and latest, and cluster "#5 meibomian glands visibility assessment" existed for the longest time.
Although the research of AI in eyelid diseases has rapidly developed in the last three years, there are still gaps in this area. Our findings provide researchers with a better understanding of the development of the field and a reference for future research directions.
Zhang X
,Zhou Z
,Cai Y
,Grzybowski A
,Ye J
,Lou L
... -
《Heliyon》
-
Global output on artificial intelligence in the field of nursing: A bibliometric analysis and science mapping.
To analyze the AI research in the field of nursing, to explore the current situation, hot topics, and prospects of AI research in the field of nursing, and to provide a reference for researchers to carry out related studies.
We used the VOSviewer 1.6.17, SciMAT, and CiteSpace 5.8.R3 to generate visual cooperation network maps for the country, organizations, authors, citations, and keywords and perform burst detection, theme evolution, and so forth.
A total of 9318 articles were obtained from the Web of Science Core Collection database. Four hundred and thirty-one AI research related to the field of nursing was published by 855 institutions from 54 countries. CIN-Computers Informatics Nursing was the top productive journal. The United States was the dominant country. The transnational cooperation between authors from developed countries was closer than that between authors from developing countries. The main hot topics included nurse rostering, nursing diagnosis, nursing decision support, disease risk factor prediction, nursing big data management, expert system, support vector machine, decision tree, deep learning, natural language processing, and nursing education. Machine learning represented one of the cutting-edge and most applicable branches of artificial intelligence in the field of nursing, and deep learning was the hottest technology among many machine learning methods in recent years. One of the most cited papers was published by Burke in 2004 and cited 500 times, which critically evaluated AI methods to deal with nurse scheduling problems.
Although AI has been paid more and more attention to the field of nursing, there is still a lack of high-yielding authors who have been engaged in this field for a long time. Most of the high contribution authors and institutions came from developed countries; therefore, more transnational and multi-disciplinary cooperation is needed to promote the development of AI in the nursing field. This bibliometric analysis not only provided a comprehensive overview to help researchers to understand the important articles, journals, potential collaborators, and institutions in this field but also analyzed the history, hot spots, and future trends of the research topic to provide inspiration for researchers to choose research directions.
Shi J
,Wei S
,Gao Y
,Mei F
,Tian J
,Zhao Y
,Li Z
... -
《-》
-
Application of AI in Sepsis: Citation Network Analysis and Evidence Synthesis.
Artificial intelligence (AI) has garnered considerable attention in the context of sepsis research, particularly in personalized diagnosis and treatment. Conducting a bibliometric analysis of existing publications can offer a broad overview of the field and identify current research trends and future research directions.
The objective of this study is to leverage bibliometric data to provide a comprehensive overview of the application of AI in sepsis.
We conducted a search in the Web of Science Core Collection database to identify relevant articles published in English until August 31, 2023. A predefined search strategy was used, evaluating titles, abstracts, and full texts as needed. We used the Bibliometrix and VOSviewer tools to visualize networks showcasing the co-occurrence of authors, research institutions, countries, citations, and keywords.
A total of 259 relevant articles published between 2014 and 2023 (until August) were identified. Over the past decade, the annual publication count has consistently risen. Leading journals in this domain include Critical Care Medicine (17/259, 6.6%), Frontiers in Medicine (17/259, 6.6%), and Scientific Reports (11/259, 4.2%). The United States (103/259, 39.8%), China (83/259, 32%), United Kingdom (14/259, 5.4%), and Taiwan (12/259, 4.6%) emerged as the most prolific countries in terms of publications. Notable institutions in this field include the University of California System, Emory University, and Harvard University. The key researchers working in this area include Ritankar Das, Chris Barton, and Rishikesan Kamaleswaran. Although the initial period witnessed a relatively low number of articles focused on AI applications for sepsis, there has been a significant surge in research within this area in recent years (2014-2023).
This comprehensive analysis provides valuable insights into AI-related research conducted in the field of sepsis, aiding health care policy makers and researchers in understanding the potential of AI and formulating effective research plans. Such analysis serves as a valuable resource for determining the advantages, sustainability, scope, and potential impact of AI models in sepsis.
Wu M
,Islam MM
,Poly TN
,Lin MC
... -
《-》