-
Research Trends in the Application of Artificial Intelligence in Oncology: A Bibliometric and Network Visualization Study.
The past decade has seen major advances in the use of artificial intelligence (AI) to solve various biomedical problems, including cancer. This has resulted in more than 6000 scientific papers focusing on AI in oncology alone. The expansiveness of this research area presents a challenge to those seeking to understand how it has developed. A scientific analysis of AI in the oncology literature is therefore crucial for understanding its overall structure and development. This may be addressed through bibliometric analysis, which employs computational and visual tools to identify research activity, relationships, and expertise within large collections of bibliographic data. There is already a large volume of research data regarding the development of AI applications in cancer research. However, there is no published bibliometric analysis of this topic that offers comprehensive insights into publication growth, co-citation networks, research collaboration, and keyword co-occurrence analysis for technological trends involving AI across the entire spectrum of oncology research. The purpose of this study is to investigate documents published during the last decade using bibliometric indicators and network visualization. This will provide a detailed assessment of global research activities, key themes, and AI trends over the entire breadth of the oncology field. It will also specifically highlight top-performing authors, organizations, and nations that have made major contributions to this research domain, as well as their interactions via network collaboration maps and betweenness centrality metric. This study represents the first global investigation of AI covering the entire cancer field and using several validated bibliometric techniques. It should provide valuable reference material for reorienting this field and for identifying research trajectories, topics, major publications, and influential entities including scholars, institutions, and countries. It will also identify international collaborations at three levels: micro (that of an individual researcher), meso (that of an institution), and macro (that of a country), in order to inform future lines of research.
The Science Citation Index Expanded from the Web of Science Core Collection was searched for articles and reviews pertaining exclusively to AI in cancer from 2012 through 2022. Annual publication trends were plotted using Microsoft Excel 2019. CiteSpace and VOSViewer were used to investigate the most productive countries, researchers, journals, as well as the sharing of resources, intellectual property, and knowledge base in this field, along with the co-citation analysis of references and keywords.
A total of 6757 documents were retrieved. China produced the most publications of any country (2087, 30.89%), and Sun Yat Sen University the highest number (167, 2.47%) of any institute. WEI WANG was the most prolific author (33, 0.49%). RUI ZHANG ranked first for highest betweenness centrality (0.21) and collaboration criteria. Scientific Reports was found to be the most prolific journal (208, 3.18%), while PloS one had the most co-citations (2121, 1.55%). Strong and ongoing citation bursts were found for keywords such as "tissue microarray", "tissue segmentation", and "artificial neural network".
Deep learning currently represents one of the most cutting-edge and applicable branches of AI in oncology. The literature to date has dealt extensively with radiomics, genomics, pathology, risk stratification, lesion detection, and therapy response. Current hot topics identified by our analysis highlight the potential application of AI in radiomics and precision oncology.
Wu T
,Duan Y
,Zhang T
,Tian W
,Liu H
,Deng Y
... -
《-》
-
Application of artificial intelligence in rheumatic disease: a bibliometric analysis.
The utilization of artificial intelligence (AI) in rheumatic diseases has enhanced the diagnostic accuracy of rheumatic diseases, enabled the prediction of patient outcomes, expanded treatment options, and facilitated the provision of individualized medical solutions. The research in this field has been progressively growing in recent years. Consequently, there is a need for bibliometric analysis to elucidate the current state of advancement and predominant research foci in AI applications within rheumatic diseases. Additionally, it is crucial to identify key contributors and their interrelations in this field. This study aimed to conduct a bibliometric analysis to investigate the current research hotspots and collaborative networks in the application of AI in rheumatic disease in recent years. A comprehensive search was conducted in Web of Science for articles on artificial intelligence in rheumatic diseases, published in SSCI and SCI-EXPANDED until January 1, 2024. Utilizing software tools like VOSviewers and CiteSpace, we analyzed various parameters including publication year, journal, country, institution, and authorship. This analysis extended to examining cited authors, generating reference and citation network graphs, and creating co-citation network and keyword maps. Additionally, research hotspots and trends in this domain were evaluated. As of January 1, 2024, a total of 3508 articles have been published on the application of artificial intelligence (AI) in rheumatic disease, exhibiting a steady rise in both the annual publication frequency and rate. "Scientific Reports" emerged as the leading journal in terms of relevant publications. The United States stood out as the predominant country in terms of the volume of published papers, with the University of California, San Francisco (UCSF) being the most prolific and frequently cited institution. Among authors, Young Ho Lee and Valentina Pedoia were noted for their significant contributions, with Pedoia achieving the highest average citation count per publication. Machine learning emerged as a prominent and central keyword. The trend indicates a growing interest in AI research within rheumatologic diseases, with its role expected to become increasingly pivotal in the field. This study presents a comprehensive summary of research trends and developments in the application of artificial intelligence (AI) in rheumatic diseases. It offers insights into potential collaborations and prospects for future research, clarifying the research frontiers and emerging directions in recent years. The findings of this study serve as a valuable reference for scholars studying rheumatology and immunology.
Zhao J
,Li L
,Li J
,Zhang L
... -
《-》
-
Quantitative analysis of artificial intelligence on liver cancer: A bibliometric analysis.
To provide the current research progress, hotspots, and emerging trends for AI in liver cancer, we have compiled a relative comprehensive and quantitative report on the research of liver disease using artificial intelligence by employing bibliometrics in this study.
In this study, the Web of Science Core Collection (WoSCC) database was used to perform systematic searches using keywords and a manual screening strategy, VOSviewer was used to analyze the degree of cooperation between countries/regions and institutions, as well as the co-occurrence of cooperation between authors and cited authors. Citespace was applied to generate a dual map to analyze the relationship of citing journals and citied journals and conduct a strong citation bursts ranking analysis of references. Online SRplot was used for in-depth keyword analysis and Microsoft Excel 2019 was used to collect the targeted variables from retrieved articles.
1724 papers were collected in this study, including 1547 original articles and 177 reviews. The study of AI in liver cancer mostly began from 2003 and has developed rapidly from 2017. China has the largest number of publications, and the United States has the highest H-index and total citation counts. The top three most productive institutions are the League of European Research Universities, Sun Yat Sen University, and Zhejiang University. Jasjit S. Suri and Frontiers in Oncology are the most published author and journal, respectively. Keyword analysis showed that in addition to the research on liver cancer, research on liver cirrhosis, fatty liver disease, and liver fibrosis were also common. Computed tomography was the most used diagnostic tool, followed by ultrasound and magnetic resonance imaging. The diagnosis and differential diagnosis of liver cancer are currently the most widely adopted research goals, and comprehensive analyses of multi-type data and postoperative analysis of patients with advanced liver cancer are rare. The use of convolutional neural networks is the main technical method used in studies of AI on liver cancer.
AI has undergone rapid development and has a wide application in the diagnosis and treatment of liver diseases, especially in China. Imaging is an indispensable tool in this filed. Mmulti-type data fusion analysis and development of multimodal treatment plans for liver cancer could become the major trend of future research in AI in liver cancer.
Xiong M
,Xu Y
,Zhao Y
,He S
,Zhu Q
,Wu Y
,Hu X
,Liu L
... -
《Frontiers in Oncology》
-
Development trends and knowledge framework of artificial intelligence (AI) applications in oncology by years: a bibliometric analysis from 1992 to 2022.
Oncology is the primary field in medicine with a high rate of artificial intelligence (AI) use. Thus, this study aimed to investigate the trends of AI in oncology, evaluating the bibliographic characteristics of articles. We evaluated the related research on the knowledge framework of Artificial Intelligence (AI) applications in Oncology through bibliometrics analysis and explored the research hotspots and current status from 1992 to 2022.
The research employed a scientometric methodology and leveraged scientific visualization tools such as Bibliometrix R Package Software, VOSviewer, and Litmaps for comprehensive data analysis. Scientific AI-related publications in oncology were retrieved from the Web of Science (WoS) and InCites from 1992 to 2022.
A total of 7,815 articles authored by 35,098 authors and published in 1,492 journals were included in the final analysis. The most prolific authors were Esteva A (citaition = 5,821) and Gillies RJ (citaition = 4288). The most active institutions were the Chinese Academy of Science and Harward University. The leading journals were Frontiers ın Oncology and Scientific Reports. The most Frequent Author Keywords are "machine learning", "deep learning," "radiomics", "breast cancer", "melanoma" and "artificial intelligence," which are the research hotspots in this field. A total of 10,866 Authors' keywords were investigated. The average number of citations per document is 23. After 2015, the number of publications proliferated.
The investigation of Artificial Intelligence (AI) applications in the field of Oncology is still in its early phases especially for genomics, proteomics, and clinicomics, with extensive studies focused on biology, diagnosis, treatment, and cancer risk assessment. This bibliometric analysis offered valuable perspectives into AI's role in Oncology research, shedding light on emerging research paths. Notably, a significant portion of these publications originated from developed nations. These findings could prove beneficial for both researchers and policymakers seeking to navigate this field.
Koçak M
,Akçalı Z
《-》
-
Research on ultrasound-based radiomics: a bibliometric analysis.
A large number of studies related to ultrasound-based radiomics have been published in recent years; however, a systematic bibliometric analysis of this topic has not yet been conducted. In this study, we attempted to identify the hotspots and frontiers in ultrasound-based radiomics through bibliometrics and to systematically characterize the overall framework and characteristics of studies through mapping and visualization.
A literature search was carried out in Web of Science Core Collection (WoSCC) database from January 2016 to December 2023 according to a predetermined search formula. Bibliometric analysis and visualization of the results were performed using CiteSpace, VOSviewer, R, and other platforms.
Ultimately, 466 eligible papers were included in the study. Publication trend analysis showed that the annual publication trend of journals in ultrasound-based radiomics could be divided into three phases: there were no more than five documents published in this field in any year before 2018, a small yearly increase in the number of annual publications occurred between 2018 and 2022, and a high, stable number of publications appeared after 2022. In the analysis of publication sources, China was found to be the main contributor, with a much higher number of publications than other countries, and was followed by the United States and Italy. Frontiers in Oncology was the journal with the highest number of papers in this field, publishing 60 articles. Among the academic institutions, Fudan University, Sun Yat-sen University, and the Chinese Academy of Sciences ranked as the top three in terms of the number of documents. In the analysis of authors and cocited authors, the author with the most publications was Yuanyuan Wang, who has published 19 articles in 8 years, while Philippe Lambin was the most cited author, with 233 citations. Visualization of the results from the cocitation analysis of the literature revealed a strong centrality of the subject terms papillary thyroid cancer, biological behavior, potential biomarkers, and comparative assessment, which may be the main focal points of research in this subject. Based on the findings of the keyword analysis and cluster analysis, the keywords can be categorized into two major groups: (I) technological innovations that enable the construction of radiomics models such as machine learning and deep learning and (II) applications of predictive models to support clinical decision-making in certain diseases, such as papillary thyroid cancer, hepatocellular carcinoma (HCC), and breast cancer.
Ultrasound-based radiomics has received widespread attention in the medical field and has been gradually been applied in clinical research. Radiomics, a relatively late development in medical technology, has made substantial contributions to the diagnosis, prediction, and prognostic evaluation of diseases. Additionally, the coupling of artificial intelligence techniques with ultrasound imaging has yielded a number of promising tools that facilitate clinical decision-making and enable the practice of precision medicine. Finally, the development of ultrasound-based radiomics requires multidisciplinary cooperation and joint efforts from the field biomedicine, information technology, statistics, and clinical medicine.
Yu L
,Che M
,Wu X
,Luo H
... -
《-》