Global output on artificial intelligence in the field of nursing: A bibliometric analysis and science mapping.

来自 PUBMED

作者:

Shi JWei SGao YMei FTian JZhao YLi Z

展开

摘要:

To analyze the AI research in the field of nursing, to explore the current situation, hot topics, and prospects of AI research in the field of nursing, and to provide a reference for researchers to carry out related studies. We used the VOSviewer 1.6.17, SciMAT, and CiteSpace 5.8.R3 to generate visual cooperation network maps for the country, organizations, authors, citations, and keywords and perform burst detection, theme evolution, and so forth. A total of 9318 articles were obtained from the Web of Science Core Collection database. Four hundred and thirty-one AI research related to the field of nursing was published by 855 institutions from 54 countries. CIN-Computers Informatics Nursing was the top productive journal. The United States was the dominant country. The transnational cooperation between authors from developed countries was closer than that between authors from developing countries. The main hot topics included nurse rostering, nursing diagnosis, nursing decision support, disease risk factor prediction, nursing big data management, expert system, support vector machine, decision tree, deep learning, natural language processing, and nursing education. Machine learning represented one of the cutting-edge and most applicable branches of artificial intelligence in the field of nursing, and deep learning was the hottest technology among many machine learning methods in recent years. One of the most cited papers was published by Burke in 2004 and cited 500 times, which critically evaluated AI methods to deal with nurse scheduling problems. Although AI has been paid more and more attention to the field of nursing, there is still a lack of high-yielding authors who have been engaged in this field for a long time. Most of the high contribution authors and institutions came from developed countries; therefore, more transnational and multi-disciplinary cooperation is needed to promote the development of AI in the nursing field. This bibliometric analysis not only provided a comprehensive overview to help researchers to understand the important articles, journals, potential collaborators, and institutions in this field but also analyzed the history, hot spots, and future trends of the research topic to provide inspiration for researchers to choose research directions.

收起

展开

DOI:

10.1111/jnu.12852

被引量:

3

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(599)

参考文献(0)

引证文献(3)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读