Global research of artificial intelligence in eyelid diseases: A bibliometric analysis.

来自 PUBMED

作者:

Zhang XZhou ZCai YGrzybowski AYe JLou L

展开

摘要:

To generate an overview of global research on artificial intelligence (AI) in eyelid diseases using a bibliometric approach. All publications related to AI in eyelid diseases from 1900 to 2023 were retrieved from the Web of Science (WoS) Core Collection database. After manual screening, 98 publications published between 2000 and 2023 were finally included. We analyzed the annual trend of publication and citation count, productivity and co-authorship of countries/territories and institutions, research domain, source journal, co-occurrence and evolution of the keywords and co-citation and clustering of the references, using the analytic tool of the WoS, VOSviewer, Wordcloud Python package and CiteSpace. By analyzing a total of 98 relevant publications, we detected that this field had continuously developed over the past two decades and had entered a phase of rapid development in the last three years. Among these countries/territories and institutions contributing to this field, China was the most productive country and had the most institutions with high productivity, while USA was the most active in collaborating with others. The most popular research domains was Ophthalmology and the most productive journals were Ocular Surface. The co-occurrence network of keywords could be classified into 3 clusters respectively concerned about blepharoptosis, meibomian gland dysfunction and blepharospasm. The evolution of research hotspots is from clinical features to clinical scenarios and from image processing to deep learning. In the clustering analysis of co-cited reference network, cluster "0# deep learning" was the largest and latest, and cluster "#5 meibomian glands visibility assessment" existed for the longest time. Although the research of AI in eyelid diseases has rapidly developed in the last three years, there are still gaps in this area. Our findings provide researchers with a better understanding of the development of the field and a reference for future research directions.

收起

展开

DOI:

10.1016/j.heliyon.2024.e34979

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(113)

参考文献(35)

引证文献(0)

来源期刊

Heliyon

影响因子:3.772

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读