-
Genome-wide association study for feed efficiency and growth traits in U.S. beef cattle.
Single nucleotide polymorphism (SNP) arrays for domestic cattle have catalyzed the identification of genetic markers associated with complex traits for inclusion in modern breeding and selection programs. Using actual and imputed Illumina 778K genotypes for 3887 U.S. beef cattle from 3 populations (Angus, Hereford, SimAngus), we performed genome-wide association analyses for feed efficiency and growth traits including average daily gain (ADG), dry matter intake (DMI), mid-test metabolic weight (MMWT), and residual feed intake (RFI), with marker-based heritability estimates produced for all traits and populations.
Moderate and/or large-effect QTL were detected for all traits in all populations, as jointly defined by the estimated proportion of variance explained (PVE) by marker effects (PVE ≥ 1.0%) and a nominal P-value threshold (P ≤ 5e-05). Lead SNPs with PVE ≥ 2.0% were considered putative evidence of large-effect QTL (n = 52), whereas those with PVE ≥ 1.0% but < 2.0% were considered putative evidence for moderate-effect QTL (n = 35). Identical or proximal lead SNPs associated with ADG, DMI, MMWT, and RFI collectively supported the potential for either pleiotropic QTL, or independent but proximal causal mutations for multiple traits within and between the analyzed populations. Marker-based heritability estimates for all investigated traits ranged from 0.18 to 0.60 using 778K genotypes, or from 0.17 to 0.57 using 50K genotypes (reduced from Illumina 778K HD to Illumina Bovine SNP50). An investigation to determine if QTL detected by 778K analysis could also be detected using 50K genotypes produced variable results, suggesting that 50K analyses were generally insufficient for QTL detection in these populations, and that relevant breeding or selection programs should be based on higher density analyses (imputed or directly ascertained).
Fourteen moderate to large-effect QTL regions which ranged from being physically proximal (lead SNPs ≤ 3Mb) to fully overlapping for RFI, DMI, ADG, and MMWT were detected within and between populations, and included evidence for pleiotropy, proximal but independent causal mutations, and multi-breed QTL. Bovine positional candidate genes for these traits were functionally conserved across vertebrate species.
Seabury CM
,Oldeschulte DL
,Saatchi M
,Beever JE
,Decker JE
,Halley YA
,Bhattarai EK
,Molaei M
,Freetly HC
,Hansen SL
,Yampara-Iquise H
,Johnson KA
,Kerley MS
,Kim J
,Loy DD
,Marques E
,Neibergs HL
,Schnabel RD
,Shike DW
,Spangler ML
,Weaber RL
,Garrick DJ
,Taylor JF
... -
《BMC GENOMICS》
-
QTLs associated with dry matter intake, metabolic mid-test weight, growth and feed efficiency have little overlap across 4 beef cattle studies.
Saatchi M
,Beever JE
,Decker JE
,Faulkner DB
,Freetly HC
,Hansen SL
,Yampara-Iquise H
,Johnson KA
,Kachman SD
,Kerley MS
,Kim J
,Loy DD
,Marques E
,Neibergs HL
,Pollak EJ
,Schnabel RD
,Seabury CM
,Shike DW
,Snelling WM
,Spangler ML
,Weaber RL
,Garrick DJ
,Taylor JF
... -
《BMC GENOMICS》
-
Genome-wide association and genotype by environment interactions for growth traits in U.S. Gelbvieh cattle.
Single nucleotide polymorphism (SNP) arrays have facilitated discovery of genetic markers associated with complex traits in domestic cattle; thereby enabling modern breeding and selection programs. Genome-wide association analyses (GWAA) for growth traits were conducted on 10,837 geographically diverse U.S. Gelbvieh cattle using a union set of 856,527 imputed SNPs. Birth weight (BW), weaning weight (WW), and yearling weight (YW) were analyzed using GEMMA and EMMAX (via imputed genotypes). Genotype-by-environment (GxE) interactions were also investigated.
GEMMA and EMMAX produced moderate marker-based heritability estimates that were similar for BW (0.36-0.37, SE = 0.02-0.06), WW (0.27-0.29, SE = 0.01), and YW (0.39-0.41, SE = 0.01-0.02). GWAA using 856K imputed SNPs (GEMMA; EMMAX) revealed common positional candidate genes underlying pleiotropic QTL for Gelbvieh growth traits on BTA6, BTA7, BTA14, and BTA20. The estimated proportion of phenotypic variance explained (PVE) by the lead SNP defining these QTL (EMMAX) was larger and most similar for BW and YW, and smaller for WW. Collectively, GWAAs (GEMMA; EMMAX) produced a highly concordant set of BW, WW, and YW QTL that met a nominal significance level (P ≤ 1e-05), with prioritization of common positional candidate genes; including genes previously associated with stature, feed efficiency, and growth traits (i.e., PLAG1, NCAPG, LCORL, ARRDC3, STC2). Genotype-by-environment QTL were not consistent among traits at the nominal significance threshold (P ≤ 1e-05); although some shared QTL were apparent at less stringent significance thresholds (i.e., P ≤ 2e-05).
Pleiotropic QTL for growth traits were detected on BTA6, BTA7, BTA14, and BTA20 for U.S. Gelbvieh beef cattle. Seven QTL detected for Gelbvieh growth traits were also recently detected for feed efficiency and growth traits in U.S. Angus, SimAngus, and Hereford cattle. Marker-based heritability estimates and the detection of pleiotropic QTL segregating in multiple breeds support the implementation of multiple-breed genomic selection.
Smith JL
,Wilson ML
,Nilson SM
,Rowan TN
,Oldeschulte DL
,Schnabel RD
,Decker JE
,Seabury CM
... -
《BMC GENOMICS》
-
Accuracy of genomic predictions for feed efficiency traits of beef cattle using 50K and imputed HD genotypes.
The accuracy of genomic predictions can be used to assess the utility of dense marker genotypes for genetic improvement of beef efficiency traits. This study was designed to test the impact of genomic distance between training and validation populations, training population size, statistical methods, and density of genetic markers on prediction accuracy for feed efficiency traits in multibreed and crossbred beef cattle. A total of 6,794 beef cattle data collated from various projects and research herds across Canada were used. Illumina BovineSNP50 (50K) and imputed Axiom Genome-Wide BOS 1 Array (HD) genotypes were available for all animals. The traits studied were DMI, ADG, and residual feed intake (RFI). Four validation groups of 150 animals each, including Angus (AN), Charolais (CH), Angus-Hereford crosses (ANHH), and a Charolais-based composite (TX) were created by considering the genomic distance between pairs of individuals in the validation groups. Each validation group had 7 corresponding training groups of increasing sizes ( = 1,000, 1,999, 2,999, 3,999, 4,999, 5,998, and 6,644), which also represent increasing average genomic distance between pairs of individuals in the training and validations groups. Prediction of genomic estimated breeding values (GEBV) was performed using genomic best linear unbiased prediction (GBLUP) and Bayesian method C (BayesC). The accuracy of genomic predictions was defined as the Pearson's correlation between adjusted phenotype and GEBV (), unless otherwise stated. Using 50K genotypes, the highest average achieved in purebreds (AN, CH) was 0.41 for DMI, 0.34 for ADG, and 0.35 for RFI, whereas in crossbreds (ANHH, TX) it was 0.38 for DMI, 0.21 for ADG, and 0.25 for RFI. Similarly, when imputed HD genotypes were applied in purebreds (AN, CH), the highest average was 0.14 for DMI, 0.15 for ADG, and 0.14 for RFI, whereas in crossbreds (ANHH, TX) it was 0.38 for DMI, 0.22 for ADG, and 0.24 for RFI. The of GBLUP predictions were greatly reduced with increasing genomic average distance compared to those from BayesC predictions. The results indicate that 50K genotypes, used with BayesC, are more effective for predicting GEBV in purebred cattle. Imputed HD genotypes found utility when dealing with composites and crossbreds. Formulation of a fairly large training set for genomic predictions in beef cattle should consider the genomic distance between the training and target populations.
Lu D
,Akanno EC
,Crowley JJ
,Schenkel F
,Li H
,De Pauw M
,Moore SS
,Wang Z
,Li C
,Stothard P
,Plastow G
,Miller SP
,Basarab JA
... -
《-》
-
Development and validation of a small SNP panel for feed efficiency in beef cattle.
The objective of this study was to develop and validate a customized cost-effective single nucleotide polymorphism (SNP) panel for genetic improvement of feed efficiency in beef cattle. The SNPs identified in previous association studies and through extensive analysis of candidate genomic regions and genes, were screened for their functional impact and allele frequency in Angus and Hereford breeds used as validation candidates for the panel. Association analyses were performed on genotypes of 159 SNPs from new samples of Angus (n = 160), Hereford (n = 329), and Angus-Hereford crossbred (n = 382) cattle using allele substitution and genotypic models in ASReml. Genomic heritabilities were estimated for feed efficiency traits using the full set of SNPs, SNPs associated with at least one of the traits (at P ≤ 0.05 and P < 0.10), as well as the Illumina bovine 50K representing a widely used commercial genotyping panel. A total of 63 SNPs within 43 genes showed association (P ≤ 0.05) with at least one trait. The minor alleles of SNPs located in the GHR and CAST genes were associated with decreasing effects on residual feed intake (RFI) and/or RFI adjusted for backfat (RFIf), whereas minor alleles of SNPs within MKI67 gene were associated with increasing effects on RFI and RFIf. Additionally, the minor allele of rs137400016 SNP within CNTFR was associated with increasing average daily gain (ADG). The SNPs genotypes within UMPS, SMARCAL, CCSER1, and LMCD1 genes showed significant over-dominance effects whereas other SNPs located in SMARCAL1, ANXA2, CACNA1G, and PHYHIPL genes showed additive effects on RFI and RFIf. Gene enrichment analysis indicated that gland development, as well as ion and cation transport are important physiological mechanisms contributing to variation in feed efficiency traits. The study revealed the effect of the Jak-STAT signaling pathway on feed efficiency through the CNTFR, OSMR, and GHR genes. Genomic heritability using the 63 significant (P ≤ 0.05) SNPs was 0.09, 0.09, 0.13, 0.05, 0.05, and 0.07 for ADG, dry matter intake, midpoint metabolic weight, RFI, RFIf, and backfat, respectively. These SNPs contributed to genetic variation in the studied traits and thus can potentially be used or tested to generate cost-effective molecular breeding values for feed efficiency in beef cattle.
Abo-Ismail MK
,Lansink N
,Akanno E
,Karisa BK
,Crowley JJ
,Moore SS
,Bork E
,Stothard P
,Basarab JA
,Plastow GS
... -
《-》