
自引率: 5.7%
被引量: 43220
通过率: 暂无数据
审稿周期: 6.63
版面费用: 16030
国人发稿量: 386
投稿须知/期刊简介:
Published by BioMed Central. ISSN: 1471-2164.<br /><br />BMC Genomics publishes original research articles in all aspects of gene mapping, sequencing and analysis, functional genomics, and proteomics.
期刊描述简介:
Exploring all aspects of genome-scale analysis, functional genomics, epigenomics, proteomics and transcriptomics, including novel methods and techniques, BMC Genomics is an open access peer-reviewed journal with a large readership and a highly experienced Editorial Board. This journal is part of the BMC series, a research community-focused collection publishing scientifically valid studies based on community-agreed standards of questioning, methods and analysis.
-
Genetic diversity and signatures of selection for heat tolerance and immune response in Iranian native chickens.
Understanding how evolutionary forces relating to climate have shaped the patterns of genetic variation within and between species is a fundamental pursuit in biology. Iranian indigenous chickens have evolved genetic adaptations to their local environmental conditions, such as hot and arid regions. In the present study, we provide a population genome landscape of genetic variations in 72 chickens representing nine Iranian indigenous ecotypes (Creeper, Isfahan, Lari, Marand, Mashhad, Naked neck, Sari, Shiraz and Yazd) and two commercial lines (White Leghorn and Arian). We further performed comparative population genomics to evaluate the genetic basis underlying variation in the adaptation to hot climate and immune response in indigenous chicken ecotypes. To detect genomic signatures of adaptation, we applied nucleotide diversity (θπ) and F statistical measurements, and further analyzed the results to find genomic regions under selection for hot adaptation and immune response-related traits. By generating whole-genome data, we assessed the relationship between the genetic diversity of indigenous chicken ecotypes and their genetic distances to two different commercial lines. The results of genetic structure analysis revealed clustering of indigenous chickens in agreement with their geographic origin. Among all studied chicken groups, the highest level of linkage disequilibrium (LD) (~ 0.70) was observed in White Leghorn group at marker pairs distance of 1 Kb. The results from admixture analysis demonstrated evidence of shared ancestry between Arian individuals and indigenous chickens, especially those from the north of the country. Our search for potential genomic regions under selection in indigenous chicken ecotypes revealed several immune response and heat shock protein-related genes, such as HSP70, HSPA9, HSPH1, HSP90AB1 and PLCB4 that have been previously unknown to be involved in environmental-adaptive traits. In addition, we found some other candidate loci on different chromosomes probably related with hot adaptation and immune response-related traits. The work provides crucial insights into the structural variation in the genome of Iranian indigenous chicken ecotypes, which up to now has not been genetically investigated. Several genes were identified as candidates for drought, heat tolerance, immune response and other phenotypic traits. These candidate genes may be helpful targets for understanding of the molecular basis of adaptation to hot environmental climate and as such they should be used in chicken breeding programs to select more efficient breeds for desert climate.
被引量:- 发表:1970
-
Investigating the impact of reference assembly choice on genomic analyses in a cattle breed.
Reference-guided read alignment and variant genotyping are prone to reference allele bias, particularly for samples that are greatly divergent from the reference genome. A Hereford-based assembly is the widely accepted bovine reference genome. Haplotype-resolved genomes that exceed the current bovine reference genome in quality and continuity have been assembled for different breeds of cattle. Using whole genome sequencing data of 161 Brown Swiss cattle, we compared the accuracy of read mapping and sequence variant genotyping as well as downstream genomic analyses between the bovine reference genome (ARS-UCD1.2) and a highly continuous Angus-based assembly (UOA_Angus_1). Read mapping accuracy did not differ notably between the ARS-UCD1.2 and UOA_Angus_1 assemblies. We discovered 22,744,517 and 22,559,675 high-quality variants from ARS-UCD1.2 and UOA_Angus_1, respectively. The concordance between sequence- and array-called genotypes was high and the number of variants deviating from Hardy-Weinberg proportions was low at segregating sites for both assemblies. More artefactual INDELs were genotyped from UOA_Angus_1 than ARS-UCD1.2 alignments. Using the composite likelihood ratio test, we detected 40 and 33 signatures of selection from ARS-UCD1.2 and UOA_Angus_1, respectively, but the overlap between both assemblies was low. Using the 161 sequenced Brown Swiss cattle as a reference panel, we imputed sequence variant genotypes into a mapping cohort of 30,499 cattle that had microarray-derived genotypes using a two-step imputation approach. The accuracy of imputation (Beagle R) was very high (0.87) for both assemblies. Genome-wide association studies between imputed sequence variant genotypes and six dairy traits as well as stature produced almost identical results from both assemblies. The ARS-UCD1.2 and UOA_Angus_1 assemblies are suitable for reference-guided genome analyses in Brown Swiss cattle. Although differences in read mapping and genotyping accuracy between both assemblies are negligible, the choice of the reference genome has a large impact on detecting signatures of selection that already reached fixation using the composite likelihood ratio test. We developed a workflow that can be adapted and reused to compare the impact of reference genomes on genome analyses in various breeds, populations and species.
被引量:- 发表:1970
-
Investigation of ancestral alleles in the Bovinae subfamily.
In evolutionary theory, divergence and speciation can arise from long periods of reproductive isolation, genetic mutation, selection and environmental adaptation. After divergence, alleles can either persist in their initial state (ancestral allele - AA), co-exist or be replaced by a mutated state (derived alleles -DA). In this study, we aligned whole genome sequences of individuals from the Bovinae subfamily to the cattle reference genome (ARS.UCD-1.2) for defining ancestral alleles necessary for selection signatures study. Accommodating independent divergent of each lineage from the initial ancestral state, AA were defined based on fixed alleles on at least two groups of yak, bison and gayal-gaur-banteng resulting in ~ 32.4 million variants. Using non-overlapping scanning windows of 10 Kb, we counted the AA observed within taurine and zebu cattle. We focused on the extreme points, regions with top 0. 1% (high count) and regions without any occurrence of AA (null count). High count regions preserved gene functions from ancestral states that are still beneficial in the current condition, while null counts regions were linked to mutated ones. For both cattle, high count regions were associated with basal lipid metabolism, essential for survival of various environmental pressures. Mutated regions were associated to productive traits in taurine, i.e. higher metabolism, cell development and behaviors and in immune response domain for zebu. Our findings suggest that retaining and losing AA in some regions are varied and made it species-specific with possibility of overlapping as it depends on the selective pressure they had to experience.
被引量:4 发表:1970
-
Assessing genomic diversity and signatures of selection in Jiaxian Red cattle using whole-genome sequencing data.
Native cattle breeds are an important source of genetic variation because they might carry alleles that enable them to adapt to local environment and tough feeding conditions. Jiaxian Red, a Chinese native cattle breed, is reported to have originated from crossbreeding between taurine and indicine cattle; their history as a draft and meat animal dates back at least 30 years. Using whole-genome sequencing (WGS) data of 30 animals from the core breeding farm, we investigated the genetic diversity, population structure and genomic regions under selection of Jiaxian Red cattle. Furthermore, we used 131 published genomes of world-wide cattle to characterize the genomic variation of Jiaxian Red cattle. The population structure analysis revealed that Jiaxian Red cattle harboured the ancestry with East Asian taurine (0.493), Chinese indicine (0.379), European taurine (0.095) and Indian indicine (0.033). Three methods (nucleotide diversity, linkage disequilibrium decay and runs of homozygosity) implied the relatively high genomic diversity in Jiaxian Red cattle. We used θπ, CLR, F and XP-EHH methods to look for the candidate signatures of positive selection in Jiaxian Red cattle. A total number of 171 (θπ and CLR) and 17 (F and XP-EHH) shared genes were identified using different detection strategies. Functional annotation analysis revealed that these genes are potentially responsible for growth and feed efficiency (CCSER1), meat quality traits (ROCK2, PPP1R12A, CYB5R4, EYA3, PHACTR1), fertility (RFX4, SRD5A2) and immune system response (SLAMF1, CD84 and SLAMF6). We provide a comprehensive overview of sequence variations in Jiaxian Red cattle genomes. Selection signatures were detected in genomic regions that are possibly related to economically important traits in Jiaxian Red cattle. We observed a high level of genomic diversity and low inbreeding in Jiaxian Red cattle. These results provide a basis for further resource protection and breeding improvement of this breed.
被引量:39 发表:1970
-
The patterns of admixture, divergence, and ancestry of African cattle populations determined from genome-wide SNP data.
Humpless Bos taurus cattle are one of the earliest domestic cattle in Africa, followed by the arrival of humped Bos indicus cattle. The diverse indigenous cattle breeds of Africa are derived from these migrations, with most appearing to be hybrids between Bos taurus and Bos indicus. The present study examines the patterns of admixture, diversity, and relationships among African cattle breeds. Data for ~ 40 k SNPs was obtained from previous projects for 4089 animals representing 35 African indigenous, 6 European Bos taurus, 4 Bos indicus, and 5 African crossbred cattle populations. Genetic diversity and population structure were assessed using principal component analyses (PCA), admixture analyses, and Wright's F statistic. The linkage disequilibrium and effective population size (Ne) were estimated for the pure cattle populations. The first two principal components differentiated Bos indicus from European Bos taurus, and African Bos taurus from other breeds. PCA and admixture analyses showed that, except for recently admixed cattle, all indigenous breeds are either pure African Bos taurus or admixtures of African Bos taurus and Bos indicus. The African zebu breeds had highest proportions of Bos indicus ancestry ranging from 70 to 90% or 60 to 75%, depending on the admixture model. Other indigenous breeds that were not 100% African Bos taurus, ranged from 42 to 70% or 23 to 61% Bos indicus ancestry. The African Bos taurus populations showed substantial genetic diversity, and other indigenous breeds show evidence of having more than one African taurine ancestor. Ne estimates based on r and r showed a decline in Ne from a large population at 2000 generations ago, which is surprising for the indigenous breeds given the expected increase in cattle populations over that period and the lack of structured breeding programs. African indigenous cattle breeds have a large genetic diversity and are either pure African Bos taurus or admixtures of African Bos taurus and Bos indicus. This provides a rich resource of potentially valuable genetic variation, particularly for adaptation traits, and to support conservation programs. It also provides challenges for the development of genomic assays and tools for use in African populations.
被引量:10 发表:1970