Accuracy of genomic predictions for feed efficiency traits of beef cattle using 50K and imputed HD genotypes.

来自 PUBMED

作者:

Lu DAkanno ECCrowley JJSchenkel FLi HDe Pauw MMoore SSWang ZLi CStothard PPlastow GMiller SPBasarab JA

展开

摘要:

The accuracy of genomic predictions can be used to assess the utility of dense marker genotypes for genetic improvement of beef efficiency traits. This study was designed to test the impact of genomic distance between training and validation populations, training population size, statistical methods, and density of genetic markers on prediction accuracy for feed efficiency traits in multibreed and crossbred beef cattle. A total of 6,794 beef cattle data collated from various projects and research herds across Canada were used. Illumina BovineSNP50 (50K) and imputed Axiom Genome-Wide BOS 1 Array (HD) genotypes were available for all animals. The traits studied were DMI, ADG, and residual feed intake (RFI). Four validation groups of 150 animals each, including Angus (AN), Charolais (CH), Angus-Hereford crosses (ANHH), and a Charolais-based composite (TX) were created by considering the genomic distance between pairs of individuals in the validation groups. Each validation group had 7 corresponding training groups of increasing sizes ( = 1,000, 1,999, 2,999, 3,999, 4,999, 5,998, and 6,644), which also represent increasing average genomic distance between pairs of individuals in the training and validations groups. Prediction of genomic estimated breeding values (GEBV) was performed using genomic best linear unbiased prediction (GBLUP) and Bayesian method C (BayesC). The accuracy of genomic predictions was defined as the Pearson's correlation between adjusted phenotype and GEBV (), unless otherwise stated. Using 50K genotypes, the highest average achieved in purebreds (AN, CH) was 0.41 for DMI, 0.34 for ADG, and 0.35 for RFI, whereas in crossbreds (ANHH, TX) it was 0.38 for DMI, 0.21 for ADG, and 0.25 for RFI. Similarly, when imputed HD genotypes were applied in purebreds (AN, CH), the highest average was 0.14 for DMI, 0.15 for ADG, and 0.14 for RFI, whereas in crossbreds (ANHH, TX) it was 0.38 for DMI, 0.22 for ADG, and 0.24 for RFI. The of GBLUP predictions were greatly reduced with increasing genomic average distance compared to those from BayesC predictions. The results indicate that 50K genotypes, used with BayesC, are more effective for predicting GEBV in purebred cattle. Imputed HD genotypes found utility when dealing with composites and crossbreds. Formulation of a fairly large training set for genomic predictions in beef cattle should consider the genomic distance between the training and target populations.

收起

展开

DOI:

10.2527/jas.2015-0126

被引量:

18

年份:

2016

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(393)

参考文献(0)

引证文献(18)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读