-
Accuracy of genomic predictions for feed efficiency traits of beef cattle using 50K and imputed HD genotypes.
The accuracy of genomic predictions can be used to assess the utility of dense marker genotypes for genetic improvement of beef efficiency traits. This study was designed to test the impact of genomic distance between training and validation populations, training population size, statistical methods, and density of genetic markers on prediction accuracy for feed efficiency traits in multibreed and crossbred beef cattle. A total of 6,794 beef cattle data collated from various projects and research herds across Canada were used. Illumina BovineSNP50 (50K) and imputed Axiom Genome-Wide BOS 1 Array (HD) genotypes were available for all animals. The traits studied were DMI, ADG, and residual feed intake (RFI). Four validation groups of 150 animals each, including Angus (AN), Charolais (CH), Angus-Hereford crosses (ANHH), and a Charolais-based composite (TX) were created by considering the genomic distance between pairs of individuals in the validation groups. Each validation group had 7 corresponding training groups of increasing sizes ( = 1,000, 1,999, 2,999, 3,999, 4,999, 5,998, and 6,644), which also represent increasing average genomic distance between pairs of individuals in the training and validations groups. Prediction of genomic estimated breeding values (GEBV) was performed using genomic best linear unbiased prediction (GBLUP) and Bayesian method C (BayesC). The accuracy of genomic predictions was defined as the Pearson's correlation between adjusted phenotype and GEBV (), unless otherwise stated. Using 50K genotypes, the highest average achieved in purebreds (AN, CH) was 0.41 for DMI, 0.34 for ADG, and 0.35 for RFI, whereas in crossbreds (ANHH, TX) it was 0.38 for DMI, 0.21 for ADG, and 0.25 for RFI. Similarly, when imputed HD genotypes were applied in purebreds (AN, CH), the highest average was 0.14 for DMI, 0.15 for ADG, and 0.14 for RFI, whereas in crossbreds (ANHH, TX) it was 0.38 for DMI, 0.22 for ADG, and 0.24 for RFI. The of GBLUP predictions were greatly reduced with increasing genomic average distance compared to those from BayesC predictions. The results indicate that 50K genotypes, used with BayesC, are more effective for predicting GEBV in purebred cattle. Imputed HD genotypes found utility when dealing with composites and crossbreds. Formulation of a fairly large training set for genomic predictions in beef cattle should consider the genomic distance between the training and target populations.
Lu D
,Akanno EC
,Crowley JJ
,Schenkel F
,Li H
,De Pauw M
,Moore SS
,Wang Z
,Li C
,Stothard P
,Plastow G
,Miller SP
,Basarab JA
... -
《-》
-
Accuracy of predicting genomic breeding values for residual feed intake in Angus and Charolais beef cattle.
In beef cattle, phenotypic data that are difficult and/or costly to measure, such as feed efficiency, and DNA marker genotypes are usually available on a small number of animals of different breeds or populations. To achieve a maximal accuracy of genomic prediction using the phenotype and genotype data, strategies for forming a training population to predict genomic breeding values (GEBV) of the selection candidates need to be evaluated. In this study, we examined the accuracy of predicting GEBV for residual feed intake (RFI) based on 522 Angus and 395 Charolais steers genotyped on SNP with the Illumina Bovine SNP50 Beadchip for 3 training population forming strategies: within breed, across breed, and by pooling data from the 2 breeds (i.e., combined). Two other scenarios with the training and validation data split by birth year and by sire family within a breed were also investigated to assess the impact of genetic relationships on the accuracy of genomic prediction. Three statistical methods including the best linear unbiased prediction with the relationship matrix defined based on the pedigree (PBLUP), based on the SNP genotypes (GBLUP), and a Bayesian method (BayesB) were used to predict the GEBV. The results showed that the accuracy of the GEBV prediction was the highest when the prediction was within breed and when the validation population had greater genetic relationships with the training population, with a maximum of 0.58 for Angus and 0.64 for Charolais. The within-breed prediction accuracies dropped to 0.29 and 0.38, respectively, when the validation populations had a minimal pedigree link with the training population. When the training population of a different breed was used to predict the GEBV of the validation population, that is, across-breed genomic prediction, the accuracies were further reduced to 0.10 to 0.22, depending on the prediction method used. Pooling data from the 2 breeds to form the training population resulted in accuracies increased to 0.31 and 0.43, respectively, for the Angus and Charolais validation populations. The results suggested that the genetic relationship of selection candidates with the training population has a greater impact on the accuracy of GEBV using the Illumina Bovine SNP50 Beadchip. Pooling data from different breeds to form the training population will improve the accuracy of across breed genomic prediction for RFI in beef cattle.
Chen L
,Schenkel F
,Vinsky M
,Crews DH Jr
,Li C
... -
《-》
-
Estimation of genomic breeding values for residual feed intake in a multibreed cattle population.
Residual feed intake (RFI) is a measure of the efficiency of animals in feed utilization. The accuracies of GEBV for RFI could be improved by increasing the size of the reference population. Combining RFI records of different breeds is a way to do that. The aims of this study were to 1) develop a method for calculating GEBV in a multibreed population and 2) improve the accuracies of GEBV by using SNP associated with RFI. An alternative method for calculating accuracies of GEBV using genomic BLUP (GBLUP) equations is also described and compared to cross-validation tests. The dataset included RFI records and 606,096 SNP genotypes for 5,614 Bos taurus animals including 842 Holstein heifers and 2,009 Australian and 2,763 Canadian beef cattle. A range of models were tested for combining genotype and phenotype information from different breeds and the best model included an overall effect of each SNP, an effect of each SNP specific to a breed, and a small residual polygenic effect defined by the pedigree. In this model, the Holsteins and some Angus cattle were combined into 1 "breed class" because they were the only cattle measured for RFI at an early age (6-9 mo of age) and were fed a similar diet. The average empirical accuracy (0.31), estimated by calculating the correlation between GEBV and actual phenotypes divided by the square root of estimated heritability in 5-fold cross-validation tests, was near to that expected using the GBLUP equations (0.34). The average empirical and expected accuracies were 0.30 and 0.31, respectively, when the GEBV were estimated for each breed separately. Therefore, the across-breed reference population increased the accuracy of GEBV slightly, although the gain was greater for breeds with smaller number of individuals in the reference population (0.08 in Murray Grey and 0.11 in Hereford for empirical accuracy). In a second approach, SNP that were significantly (P < 0.001) associated with RFI in the beef cattle genomewide association studies were used to create an auxiliary genomic relationship matrix for estimating GEBV in Holstein heifers. The empirical (and expected) accuracy of GEBV within Holsteins increased from 0.33 (0.35) to 0.39 (0.36) and improved even more to 0.43 (0.50) when using a multibreed reference population. Therefore, a multibreed reference population is a useful resource to find SNP with a greater than average association with RFI in 1 breed and use them to estimate GEBV in another breed.
Khansefid M
,Pryce JE
,Bolormaa S
,Miller SP
,Wang Z
,Li C
,Goddard ME
... -
《-》
-
Genome-wide association study for feed efficiency and growth traits in U.S. beef cattle.
Single nucleotide polymorphism (SNP) arrays for domestic cattle have catalyzed the identification of genetic markers associated with complex traits for inclusion in modern breeding and selection programs. Using actual and imputed Illumina 778K genotypes for 3887 U.S. beef cattle from 3 populations (Angus, Hereford, SimAngus), we performed genome-wide association analyses for feed efficiency and growth traits including average daily gain (ADG), dry matter intake (DMI), mid-test metabolic weight (MMWT), and residual feed intake (RFI), with marker-based heritability estimates produced for all traits and populations.
Moderate and/or large-effect QTL were detected for all traits in all populations, as jointly defined by the estimated proportion of variance explained (PVE) by marker effects (PVE ≥ 1.0%) and a nominal P-value threshold (P ≤ 5e-05). Lead SNPs with PVE ≥ 2.0% were considered putative evidence of large-effect QTL (n = 52), whereas those with PVE ≥ 1.0% but < 2.0% were considered putative evidence for moderate-effect QTL (n = 35). Identical or proximal lead SNPs associated with ADG, DMI, MMWT, and RFI collectively supported the potential for either pleiotropic QTL, or independent but proximal causal mutations for multiple traits within and between the analyzed populations. Marker-based heritability estimates for all investigated traits ranged from 0.18 to 0.60 using 778K genotypes, or from 0.17 to 0.57 using 50K genotypes (reduced from Illumina 778K HD to Illumina Bovine SNP50). An investigation to determine if QTL detected by 778K analysis could also be detected using 50K genotypes produced variable results, suggesting that 50K analyses were generally insufficient for QTL detection in these populations, and that relevant breeding or selection programs should be based on higher density analyses (imputed or directly ascertained).
Fourteen moderate to large-effect QTL regions which ranged from being physically proximal (lead SNPs ≤ 3Mb) to fully overlapping for RFI, DMI, ADG, and MMWT were detected within and between populations, and included evidence for pleiotropy, proximal but independent causal mutations, and multi-breed QTL. Bovine positional candidate genes for these traits were functionally conserved across vertebrate species.
Seabury CM
,Oldeschulte DL
,Saatchi M
,Beever JE
,Decker JE
,Halley YA
,Bhattarai EK
,Molaei M
,Freetly HC
,Hansen SL
,Yampara-Iquise H
,Johnson KA
,Kerley MS
,Kim J
,Loy DD
,Marques E
,Neibergs HL
,Schnabel RD
,Shike DW
,Spangler ML
,Weaber RL
,Garrick DJ
,Taylor JF
... -
《BMC GENOMICS》
-
Development and validation of a small SNP panel for feed efficiency in beef cattle.
The objective of this study was to develop and validate a customized cost-effective single nucleotide polymorphism (SNP) panel for genetic improvement of feed efficiency in beef cattle. The SNPs identified in previous association studies and through extensive analysis of candidate genomic regions and genes, were screened for their functional impact and allele frequency in Angus and Hereford breeds used as validation candidates for the panel. Association analyses were performed on genotypes of 159 SNPs from new samples of Angus (n = 160), Hereford (n = 329), and Angus-Hereford crossbred (n = 382) cattle using allele substitution and genotypic models in ASReml. Genomic heritabilities were estimated for feed efficiency traits using the full set of SNPs, SNPs associated with at least one of the traits (at P ≤ 0.05 and P < 0.10), as well as the Illumina bovine 50K representing a widely used commercial genotyping panel. A total of 63 SNPs within 43 genes showed association (P ≤ 0.05) with at least one trait. The minor alleles of SNPs located in the GHR and CAST genes were associated with decreasing effects on residual feed intake (RFI) and/or RFI adjusted for backfat (RFIf), whereas minor alleles of SNPs within MKI67 gene were associated with increasing effects on RFI and RFIf. Additionally, the minor allele of rs137400016 SNP within CNTFR was associated with increasing average daily gain (ADG). The SNPs genotypes within UMPS, SMARCAL, CCSER1, and LMCD1 genes showed significant over-dominance effects whereas other SNPs located in SMARCAL1, ANXA2, CACNA1G, and PHYHIPL genes showed additive effects on RFI and RFIf. Gene enrichment analysis indicated that gland development, as well as ion and cation transport are important physiological mechanisms contributing to variation in feed efficiency traits. The study revealed the effect of the Jak-STAT signaling pathway on feed efficiency through the CNTFR, OSMR, and GHR genes. Genomic heritability using the 63 significant (P ≤ 0.05) SNPs was 0.09, 0.09, 0.13, 0.05, 0.05, and 0.07 for ADG, dry matter intake, midpoint metabolic weight, RFI, RFIf, and backfat, respectively. These SNPs contributed to genetic variation in the studied traits and thus can potentially be used or tested to generate cost-effective molecular breeding values for feed efficiency in beef cattle.
Abo-Ismail MK
,Lansink N
,Akanno E
,Karisa BK
,Crowley JJ
,Moore SS
,Bork E
,Stothard P
,Basarab JA
,Plastow GS
... -
《-》