-
Genome-wide association and genotype by environment interactions for growth traits in U.S. Gelbvieh cattle.
Single nucleotide polymorphism (SNP) arrays have facilitated discovery of genetic markers associated with complex traits in domestic cattle; thereby enabling modern breeding and selection programs. Genome-wide association analyses (GWAA) for growth traits were conducted on 10,837 geographically diverse U.S. Gelbvieh cattle using a union set of 856,527 imputed SNPs. Birth weight (BW), weaning weight (WW), and yearling weight (YW) were analyzed using GEMMA and EMMAX (via imputed genotypes). Genotype-by-environment (GxE) interactions were also investigated.
GEMMA and EMMAX produced moderate marker-based heritability estimates that were similar for BW (0.36-0.37, SE = 0.02-0.06), WW (0.27-0.29, SE = 0.01), and YW (0.39-0.41, SE = 0.01-0.02). GWAA using 856K imputed SNPs (GEMMA; EMMAX) revealed common positional candidate genes underlying pleiotropic QTL for Gelbvieh growth traits on BTA6, BTA7, BTA14, and BTA20. The estimated proportion of phenotypic variance explained (PVE) by the lead SNP defining these QTL (EMMAX) was larger and most similar for BW and YW, and smaller for WW. Collectively, GWAAs (GEMMA; EMMAX) produced a highly concordant set of BW, WW, and YW QTL that met a nominal significance level (P ≤ 1e-05), with prioritization of common positional candidate genes; including genes previously associated with stature, feed efficiency, and growth traits (i.e., PLAG1, NCAPG, LCORL, ARRDC3, STC2). Genotype-by-environment QTL were not consistent among traits at the nominal significance threshold (P ≤ 1e-05); although some shared QTL were apparent at less stringent significance thresholds (i.e., P ≤ 2e-05).
Pleiotropic QTL for growth traits were detected on BTA6, BTA7, BTA14, and BTA20 for U.S. Gelbvieh beef cattle. Seven QTL detected for Gelbvieh growth traits were also recently detected for feed efficiency and growth traits in U.S. Angus, SimAngus, and Hereford cattle. Marker-based heritability estimates and the detection of pleiotropic QTL segregating in multiple breeds support the implementation of multiple-breed genomic selection.
Smith JL
,Wilson ML
,Nilson SM
,Rowan TN
,Oldeschulte DL
,Schnabel RD
,Decker JE
,Seabury CM
... -
《BMC GENOMICS》
-
Genome-wide association and genotype by environment interactions for growth traits in U.S. Red Angus cattle.
Genotypic information produced from single nucleotide polymorphism (SNP) arrays has routinely been used to identify genomic regions associated with complex traits in beef and dairy cattle. Herein, we assembled a dataset consisting of 15,815 Red Angus beef cattle distributed across the continental U.S. and a union set of 836,118 imputed SNPs to conduct genome-wide association analyses (GWAA) for growth traits using univariate linear mixed models (LMM); including birth weight, weaning weight, and yearling weight. Genomic relationship matrix heritability estimates were produced for all growth traits, and genotype-by-environment (GxE) interactions were investigated.
Moderate to high heritabilities with small standard errors were estimated for birth weight (0.51 ± 0.01), weaning weight (0.25 ± 0.01), and yearling weight (0.42 ± 0.01). GWAA revealed 12 pleiotropic QTL (BTA6, BTA14, BTA20) influencing Red Angus birth weight, weaning weight, and yearling weight which met a nominal significance threshold (P ≤ 1e-05) for polygenic traits using 836K imputed SNPs. Moreover, positional candidate genes associated with Red Angus growth traits in this study (i.e., LCORL, LOC782905, NCAPG, HERC6, FAM184B, SLIT2, MMRN1, KCNIP4, CCSER1, GRID2, ARRDC3, PLAG1, IMPAD1, NSMAF, PENK, LOC112449660, MOS, SH3PXD2B, STC2, CPEB4) were also previously associated with feed efficiency, growth, and carcass traits in beef cattle. Collectively, 14 significant GxE interactions were also detected, but were less consistent among the investigated traits at a nominal significance threshold (P ≤ 1e-05); with one pleiotropic GxE interaction detected on BTA28 (24 Mb) for Red Angus weaning weight and yearling weight.
Sixteen well-supported QTL regions detected from the GWAA and GxE GWAA for growth traits (birth weight, weaning weight, yearling weight) in U.S. Red Angus cattle were found to be pleiotropic. Twelve of these pleiotropic QTL were also identified in previous studies focusing on feed efficiency and growth traits in multiple beef breeds and/or their composites. In agreement with other beef cattle GxE studies our results implicate the role of vasodilation, metabolism, and the nervous system in the genetic sensitivity to environmental stress.
Smith JL
,Wilson ML
,Nilson SM
,Rowan TN
,Schnabel RD
,Decker JE
,Seabury CM
... -
《BMC GENOMICS》
-
Genome-wide association study of growth in crossbred beef cattle.
Chromosomal regions harboring variation affecting cattle birth weight and BW gain to 1 yr of age were identified by marker association using the highly parallel BovineSNP50 BeadChip (50K) assay composed of 54,001 individual SNP. Genotypes were obtained from progeny (F(1); 590 steers) and 2-, 3-, and 4-breed cross grandprogeny (F(1)(2) = F(1) x F(1); 1,306 steers and 707 females) of 150 AI sires representing 7 breeds (22 sires per breed; Angus, Charolais, Gelbvieh, Hereford, Limousin, Red Angus, and Simmental). Genotypes and birth, weaning, and yearling BW records were used in whole-genome association analyses to estimate effects of individual SNP on growth. Traits analyzed included growth component traits: birth weight (BWT), 205-d adjusted birth to weaning BW gain (WG), 160-d adjusted postweaning BW gain (PWG); cumulative traits: 205-d adjusted weaning weight (WW = BWT + WG) and 365-d adjusted yearling weight (YW = BWT + WG + PWG); and indexes of relative differences between postnatal growth and birth weight. Modeled fixed effects included additive effects of calf and dam SNP genotype, year-sex-management contemporary groups, and covariates for calf and dam breed composition and heterosis. Direct and maternal additive polygenic effects and maternal permanent environment effects were random. Missing genotypes, including 50K genotypes of most dams, were approximated with a single-locus BLUP procedure from pedigree relationships and known 50K genotypes. Various association criteria were applied: stringent tests to account for multiple testing but with limited power to detect associations with small effects, and relaxed nominal P that may detect SNP associated with small effects but include excessive false positive associations. Genomic locations of the 231 SNP meeting stringent criteria generally coincided with described previously QTL affecting growth traits. The 12,425 SNP satisfying relaxed tests were located throughout the genome. Most SNP associated with BWT and postnatal growth affected components in the same direction, although detection of SNP associated with one component independent of others presents a possible opportunity for SNP-assisted selection to increase postnatal growth relative to BWT.
Snelling WM
,Allan MF
,Keele JW
,Kuehn LA
,McDaneld T
,Smith TP
,Sonstegard TS
,Thallman RM
,Bennett GL
... -
《-》
-
Genome-wide association study for feed efficiency and growth traits in U.S. beef cattle.
Single nucleotide polymorphism (SNP) arrays for domestic cattle have catalyzed the identification of genetic markers associated with complex traits for inclusion in modern breeding and selection programs. Using actual and imputed Illumina 778K genotypes for 3887 U.S. beef cattle from 3 populations (Angus, Hereford, SimAngus), we performed genome-wide association analyses for feed efficiency and growth traits including average daily gain (ADG), dry matter intake (DMI), mid-test metabolic weight (MMWT), and residual feed intake (RFI), with marker-based heritability estimates produced for all traits and populations.
Moderate and/or large-effect QTL were detected for all traits in all populations, as jointly defined by the estimated proportion of variance explained (PVE) by marker effects (PVE ≥ 1.0%) and a nominal P-value threshold (P ≤ 5e-05). Lead SNPs with PVE ≥ 2.0% were considered putative evidence of large-effect QTL (n = 52), whereas those with PVE ≥ 1.0% but < 2.0% were considered putative evidence for moderate-effect QTL (n = 35). Identical or proximal lead SNPs associated with ADG, DMI, MMWT, and RFI collectively supported the potential for either pleiotropic QTL, or independent but proximal causal mutations for multiple traits within and between the analyzed populations. Marker-based heritability estimates for all investigated traits ranged from 0.18 to 0.60 using 778K genotypes, or from 0.17 to 0.57 using 50K genotypes (reduced from Illumina 778K HD to Illumina Bovine SNP50). An investigation to determine if QTL detected by 778K analysis could also be detected using 50K genotypes produced variable results, suggesting that 50K analyses were generally insufficient for QTL detection in these populations, and that relevant breeding or selection programs should be based on higher density analyses (imputed or directly ascertained).
Fourteen moderate to large-effect QTL regions which ranged from being physically proximal (lead SNPs ≤ 3Mb) to fully overlapping for RFI, DMI, ADG, and MMWT were detected within and between populations, and included evidence for pleiotropy, proximal but independent causal mutations, and multi-breed QTL. Bovine positional candidate genes for these traits were functionally conserved across vertebrate species.
Seabury CM
,Oldeschulte DL
,Saatchi M
,Beever JE
,Decker JE
,Halley YA
,Bhattarai EK
,Molaei M
,Freetly HC
,Hansen SL
,Yampara-Iquise H
,Johnson KA
,Kerley MS
,Kim J
,Loy DD
,Marques E
,Neibergs HL
,Schnabel RD
,Shike DW
,Spangler ML
,Weaber RL
,Garrick DJ
,Taylor JF
... -
《BMC GENOMICS》
-
Combining information from genome-wide association and multi-tissue gene expression studies to elucidate factors underlying genetic variation for residual feed intake in Australian Angus cattle.
Genome-wide association studies (GWAS) are extensively used to identify single nucleotide polymorphisms (SNP) underlying the genetic variation of complex traits. However, much uncertainly often still exists about the causal variants and genes at quantitative trait loci (QTL). The aim of this study was to identify QTL associated with residual feed intake (RFI) and genes in these regions whose expression is also associated with this trait. Angus cattle (2190 steers) with RFI records were genotyped and imputed to high density arrays (770 K) and used for a GWAS approach to identify QTL associated with RFI. RNA sequences from 126 Angus divergently selected for RFI were analyzed to identify the genes whose expression was significantly associated this trait with special attention to those genes residing in the QTL regions.
The heritability for RFI estimated for this Angus population was 0.3. In a GWAS, we identified 78 SNPs associated with RFI on six QTL (on BTA1, BTA6, BTA14, BTA17, BTA20 and BTA26). The most significant SNP was found on chromosome BTA20 (rs42662073) and explained 4% of the genetic variance. The minor allele frequencies of significant SNPs ranged from 0.05 to 0.49. All regions, except on BTA17, showed a significant dominance effect. In 1 Mb windows surrounding the six significant QTL, we found 149 genes from which OAS2, STC2, SHOX, XKR4, and SGMS1 were the closest to the most significant QTL on BTA17, BTA20, BTA1, BTA14, and BTA26, respectively. In a 2 Mb windows around the six significant QTL, we identified 15 genes whose expression was significantly associated with RFI: BTA20) NEURL1B and CPEB4; BTA17) RITA1, CCDC42B, OAS2, RPL6, and ERP29; BTA26) A1CF, SGMS1, PAPSS2, and PTEN; BTA1) MFSD1 and RARRES1; BTA14) ATP6V1H and MRPL15.
Our results showed six QTL regions associated with RFI in a beef Angus population where five of these QTL contained genes that have expression associated with this trait. Therefore, here we show that integrating information from gene expression and GWAS studies can help to better understand the genetic mechanisms that determine variation in complex traits.
de Las Heras-Saldana S
,Clark SA
,Duijvesteijn N
,Gondro C
,van der Werf JHJ
,Chen Y
... -
《BMC GENOMICS》