Effect of a smartphone self-management digital support system for low-back pain (selfBACK) among workers with high physical work demands - secondary analysis of a randomized controlled trial.


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(100)
参考文献(0)
引证文献(0)
-
Rasmussen CDN ,Sandal LF ,Holtermann A ,Stochkendahl MJ ,Mork PJ ,Søgaard K ... - 《-》
被引量: - 发表:1970年 -
Obesity is considered to be a risk factor for various diseases, and its incidence has tripled worldwide since 1975. In addition to potentially being at risk for adverse health outcomes, people with overweight or obesity are often stigmatised. Behaviour change interventions are increasingly delivered as mobile health (m-health) interventions, using smartphone apps and wearables. They are believed to support healthy behaviours at the individual level in a low-threshold manner. To assess the effects of integrated smartphone applications for adolescents and adults with overweight or obesity. We searched CENTRAL, MEDLINE, PsycINFO, CINAHL, and LILACS, as well as the trials registers ClinicalTrials.gov and World Health Organization International Clinical Trials Registry Platform on 2 October 2023 (date of last search for all databases). We placed no restrictions on the language of publication. Participants were adolescents and adults with overweight or obesity. Eligible interventions were integrated smartphone apps using at least two behaviour change techniques. The intervention could target physical activity, cardiorespiratory fitness, weight loss, healthy diet, or self-efficacy. Comparators included no or minimal intervention (NMI), a different smartphone app, personal coaching, or usual care. Eligible studies were randomised controlled trials of any duration with a follow-up of at least three months. We used standard Cochrane methodology and the RoB 2 tool. Important outcomes were physical activity, body mass index (BMI) and weight, health-related quality of life, self-efficacy, well-being, change in dietary behaviour, and adverse events. We focused on presenting studies with medium- (6 to < 12 months) and long-term (≥ 12 months) outcomes in our summary of findings table, following recommendations in the core outcome set for behavioural weight management interventions. We included 18 studies with 2703 participants. Interventions lasted from 2 to 24 months. The mean BMI in adults ranged from 27 to 50, and the median BMI z-score in adolescents ranged from 2.2 to 2.5. Smartphone app versus no or minimal intervention Thirteen studies compared a smartphone app versus NMI in adults; no studies were available for adolescents. The comparator comprised minimal health advice, handouts, food diaries, smartphone apps unrelated to weight loss, and waiting list. Measures of physical activity: at 12 months' follow-up, a smartphone app compared to NMI probably reduces moderate to vigorous physical activity (MVPA) slightly (mean difference (MD) -28.9 min/week (95% confidence interval (CI) -85.9 to 28; 1 study, 650 participants; moderate-certainty evidence)). We are very uncertain about the results of estimated energy expenditure and cardiorespiratory fitness at eight months' follow-up. A smartphone app compared with NMI probably results in little to no difference in changes in total activity time at 12 months' follow-up and leisure time physical activity at 24 months' follow-up. Anthropometric measures: a smartphone app compared with NMI may reduce BMI (MD of BMI change -2.6 kg/m2, 95% CI -6 to 0.8; 2 studies, 146 participants; very low-certainty evidence) at six to eight months' follow-up, but the evidence is very uncertain. At 12 months' follow-up, a smartphone app probably resulted in little to no difference in BMI change (MD -0.1 kg/m2, 95% CI -0.4 to 0.3; 1 study; 650 participants; moderate-certainty evidence). A smartphone app compared with NMI may result in little to no difference in body weight change (MD -2.5 kg, 95% CI -6.8 to 1.7; 3 studies, 1044 participants; low-certainty evidence) at 12 months' follow-up. At 24 months' follow-up, a smartphone app probably resulted in little to no difference in body weight change (MD 0.7 kg, 95% CI -1.2 to 2.6; 1 study, 245 participants; moderate-certainty evidence). A smartphone app compared with NMI may result in little to no difference in self-efficacy for a physical activity score at eight months' follow-up, but the results are very uncertain. A smartphone app probably results in little to no difference in quality of life and well-being at 12 months (moderate-certainty evidence) and in little to no difference in various measures used to inform dietary behaviour at 12 and 24 months' follow-up. We are very uncertain about adverse events, which were only reported narratively in two studies (very low-certainty evidence). Smartphone app versus another smartphone app Two studies compared different versions of the same app in adults, showing no or minimal differences in outcomes. One study in adults compared two different apps (calorie counting versus ketogenic diet) and suggested a slight reduction in body weight at six months in favour of the ketogenic diet app. No studies were available for adolescents. Smartphone app versus personal coaching Only one study compared a smartphone app with personal coaching in adults, presenting data at three months. Two studies compared these interventions in adolescents. A smartphone app resulted in little to no difference in BMI z-score compared to personal coaching at six months' follow-up (MD 0, 95% CI -0.2 to 0.2; 1 study; 107 participants). Smartphone app versus usual care Only one study compared an app with usual care in adults but only reported data at three months on participant satisfaction. No studies were available for adolescents. We identified 34 ongoing studies. The available evidence is limited and does not demonstrate a clear benefit of smartphone applications as interventions for adolescents or adults with overweight or obesity. While the number of studies is growing, the evidence remains incomplete due to the high variability of the apps' features, content and components, which complicates direct comparisons and assessment of their effectiveness. Comparisons with either no or minimal intervention or personal coaching show minor effects, which are mostly not clinically significant. Minimal data for adolescents also warrants further research. Evidence is also scarce for low- and middle-income countries as well as for people with different socio-economic and cultural backgrounds. The 34 ongoing studies suggest sustained interest in the topic, with new evidence expected to emerge within the next two years. In practice, clinicians and healthcare practitioners should carefully consider the potential benefits, limitations, and evolving research when recommending smartphone apps to adolescents and adults with overweight or obesity.
Metzendorf MI ,Wieland LS ,Richter B 《Cochrane Database of Systematic Reviews》
被引量: 4 发表:1970年 -
About 20-30% of older adults (≥ 65 years old) experience one or more falls each year, and falls are associated with substantial burden to the health care system, individuals, and families from resulting injuries, fractures, and reduced functioning and quality of life. Many interventions for preventing falls have been studied, and their effectiveness, factors relevant to their implementation, and patient preferences may determine which interventions to use in primary care. The aim of this set of reviews was to inform recommendations by the Canadian Task Force on Preventive Health Care (task force) on fall prevention interventions. We undertook three systematic reviews to address questions about the following: (i) the benefits and harms of interventions, (ii) how patients weigh the potential outcomes (outcome valuation), and (iii) patient preferences for different types of interventions, and their attributes, shown to offer benefit (intervention preferences). We searched four databases for benefits and harms (MEDLINE, Embase, AgeLine, CENTRAL, to August 25, 2023) and three for outcome valuation and intervention preferences (MEDLINE, PsycINFO, CINAHL, to June 9, 2023). For benefits and harms, we relied heavily on a previous review for studies published until 2016. We also searched trial registries, references of included studies, and recent reviews. Two reviewers independently screened studies. The population of interest was community-dwelling adults ≥ 65 years old. We did not limit eligibility by participant fall history. The task force rated several outcomes, decided on their eligibility, and provided input on the effect thresholds to apply for each outcome (fallers, falls, injurious fallers, fractures, hip fractures, functional status, health-related quality of life, long-term care admissions, adverse effects, serious adverse effects). For benefits and harms, we included a broad range of non-pharmacological interventions relevant to primary care. Although usual care was the main comparator of interest, we included studies comparing interventions head-to-head and conducted a network meta-analysis (NMAs) for each outcome, enabling analysis of interventions lacking direct comparisons to usual care. For benefits and harms, we included randomized controlled trials with a minimum 3-month follow-up and reporting on one of our fall outcomes (fallers, falls, injurious fallers); for the other questions, we preferred quantitative data but considered qualitative findings to fill gaps in evidence. No date limits were applied for benefits and harms, whereas for outcome valuation and intervention preferences we included studies published in 2000 or later. All data were extracted by one trained reviewer and verified for accuracy and completeness. For benefits and harms, we relied on the previous review team's risk-of-bias assessments for benefit outcomes, but otherwise, two reviewers independently assessed the risk of bias (within and across study). For the other questions, one reviewer verified another's assessments. Consensus was used, with adjudication by a lead author when necessary. A coding framework, modified from the ProFANE taxonomy, classified interventions and their attributes (e.g., supervision, delivery format, duration/intensity). For benefit outcomes, we employed random-effects NMA using a frequentist approach and a consistency model. Transitivity and coherence were assessed using meta-regressions and global and local coherence tests, as well as through graphical display and descriptive data on the composition of the nodes with respect to major pre-planned effect modifiers. We assessed heterogeneity using prediction intervals. For intervention-related adverse effects, we pooled proportions except for vitamin D for which we considered data in the control groups and undertook random-effects pairwise meta-analysis using a relative risk (any adverse effects) or risk difference (serious adverse effects). For outcome valuation, we pooled disutilities (representing the impact of a negative event, e.g. fall, on one's usual quality of life, with 0 = no impact and 1 = death and ~ 0.05 indicating important disutility) from the EQ-5D utility measurement using the inverse variance method and a random-effects model and explored heterogeneity. When studies only reported other data, we compared the findings with our main analysis. For intervention preferences, we used a coding schema identifying whether there were strong, clear, no, or variable preferences within, and then across, studies. We assessed the certainty of evidence for each outcome using CINeMA for benefit outcomes and GRADE for all other outcomes. A total of 290 studies were included across the reviews, with two studies included in multiple questions. For benefits and harms, we included 219 trials reporting on 167,864 participants and created 59 interventions (nodes). Transitivity and coherence were assessed as adequate. Across eight NMAs, the number of contributing trials ranged between 19 and 173, and the number of interventions ranged from 19 to 57. Approximately, half of the interventions in each network had at least low certainty for benefit. The fallers outcome had the highest number of interventions with moderate certainty for benefit (18/57). For the non-fall outcomes (fractures, hip fracture, long-term care [LTC] admission, functional status, health-related quality of life), many interventions had very low certainty evidence, often from lack of data. We prioritized findings from 21 interventions where there was moderate certainty for at least some benefit. Fourteen of these had a focus on exercise, the majority being supervised (for > 2 sessions) and of long duration (> 3 months), and with balance/resistance and group Tai Chi interventions generally having the most outcomes with at least low certainty for benefit. None of the interventions having moderate certainty evidence focused on walking. Whole-body vibration or home-hazard assessment (HHA) plus exercise provided to everyone showed moderate certainty for some benefit. No multifactorial intervention alone showed moderate certainty for any benefit. Six interventions only had very-low certainty evidence for the benefit outcomes. Two interventions had moderate certainty of harmful effects for at least one benefit outcome, though the populations across studies were at high risk for falls. Vitamin D and most single-component exercise interventions are probably associated with minimal adverse effects. Some uncertainty exists about possible adverse effects from other interventions. For outcome valuation, we included 44 studies of which 34 reported EQ-5D disutilities. Admission to long-term care had the highest disutility (1.0), but the evidence was rated as low certainty. Both fall-related hip (moderate certainty) and non-hip (low certainty) fracture may result in substantial disutility (0.53 and 0.57) in the first 3 months after injury. Disutility for both hip and non-hip fractures is probably lower 12 months after injury (0.16 and 0.19, with high and moderate certainty, respectively) compared to within the first 3 months. No study measured the disutility of an injurious fall. Fractures are probably more important than either falls (0.09 over 12 months) or functional status (0.12). Functional status may be somewhat more important than falls. For intervention preferences, 29 studies (9 qualitative) reported on 17 comparisons among single-component interventions showing benefit. Exercise interventions focusing on balance and/or resistance training appear to be clearly preferred over Tai Chi and other forms of exercise (e.g., yoga, aerobic). For exercise programs in general, there is probably variability among people in whether they prefer group or individual delivery, though there was high certainty that individual was preferred over group delivery of balance/resistance programs. Balance/resistance exercise may be preferred over education, though the evidence was low certainty. There was low certainty for a slight preference for education over cognitive-behavioral therapy, and group education may be preferred over individual education. To prevent falls among community-dwelling older adults, evidence is most certain for benefit, at least over 1-2 years, from supervised, long-duration balance/resistance and group Tai Chi interventions, whole-body vibration, high-intensity/dose education or cognitive-behavioral therapy, and interventions of comprehensive multifactorial assessment with targeted treatment plus HHA, HHA plus exercise, or education provided to everyone. Adding other interventions to exercise does not appear to substantially increase benefits. Overall, effects appear most applicable to those with elevated fall risk. Choice among effective interventions that are available may best depend on individual patient preferences, though when implementing new balance/resistance programs delivering individual over group sessions when feasible may be most acceptable. Data on more patient-important outcomes including fall-related fractures and adverse effects would be beneficial, as would studies focusing on equity-deserving populations and on programs delivered virtually. Not registered.
Pillay J ,Gaudet LA ,Saba S ,Vandermeer B ,Ashiq AR ,Wingert A ,Hartling L ... - 《Systematic Reviews》
被引量: - 发表:1970年 -
Among youth, symptoms of depression, anxiety, and alcohol use are associated with considerable illness and disability. Youth face many personal and health system barriers in accessing mental health care. Mobile applications (apps) offer youth potentially accessible, scalable, and anonymous therapy and other support. Recent systematic reviews on apps to reduce mental health symptoms among youth have reported uncertain effectiveness, but analyses based on the type of app-delivered therapy are limited. We conducted this systematic review with youth co-researchers to ensure that this review addressed the questions that were most important to them. The objective of this review is to synthesize the best available evidence on the effectiveness of mobile apps for the reduction of depressive symptoms (depression, generalized anxiety, psychological distress) and alcohol use among youth. We conducted electronic searches of the following bibliographic databases for studies published between January 1, 2008, and July 1, 2022: MEDLINE (via Ovid), Embase (via Ovid), PsycINFO (via Ovid), CINAHL (via EBSCOHost), and CENTRAL (via the Cochrane Library). The search used a combination of indexed terms, free text words, and MeSH headings. We manually screened the references of relevant systematic reviews and included randomized controlled trials (RCTs) for additional eligible studies, and contacted authors for full reports of identified trial registries or protocols. We included RCTs conducted among youth aged 15-24 years from any setting. We did not exclude populations on the basis of gender, socioeconomic status, geographic location or other personal characteristics. We included studies which assessed the effectiveness of app-delivered mental health support or therapy interventions that targeted the management of depressive disorders and/or alcohol use disorders. We excluded apps that targeted general wellness, apps which focused on prevention of psychological disorders and apps that targeted bipolar disorder, psychosis, post-traumatic stress disorder, attention-deficit hyperactivity disorder, substance use disorders (aside from alcohol), and sleep disorders. Eligible comparisons included usual care, no intervention, wait-list control, alternative or controlled mobile applications. We included studies which reported outcomes on depressive symptoms, anxiety symptoms, alcohol use and psychological distress over any follow-up period. We standardized the PICO definitions (population, intervention, comparison, and outcome) of each included study and grouped studies by the type of therapy or support offered by the app. Whenever app design and clinical homogeneity allowed, we meta-analyzed outcomes using a random-effects model. Outcome data measured using categorical scales were synthesized using odds ratios. Outcome data measured using continuous scales were synthesized as the standardized mean difference. We assessed the methodological quality of each included study using the Cochrane Risk of Bias 2.0 tool and we assessed certainty of the evidence using the GRADE approach. From 5280 unique citations, we included 36 RCTs published in 37 reports and conducted in 15 different countries (7984 participants). Among the 36 included trials, we assessed two with an overall low risk of bias, 8 trials with some concern regarding risk of bias, and 26 trials with a high risk of bias. Interventions varied in the type of therapy or supports offered. The most common intervention designs employed mindfulness training, cognitive behavioral therapy (CBT), or a combination of the two (mindfulness + CBT). However, other interventions also included self-monitoring, medication reminders, cognitive bias modification or positive stimulation, dialectical behavioral therapy, gamified health promotion, or social skill building. Mindfulness apps led to short term improvements in depressive symptoms when compared to a withheld control (SMD = -0.36; 95% CI [-0.63, -0.10]; p = 0.007, n = 3 RCTs, GRADE: very low certainty) and when compared to an active control (SMD = -0.27; 95% CI [-0.53, -0.01]; p = 0.04, n = 2 RCTs, GRADE: very low). Apps delivering this type of support also significantly improved symptoms of anxiety when compared to a withheld control (SMD = -0.35; 95% CI [-0.60, -0.09]; p = 0.008, n = 3 RCTs, GRADE: very low) but not when compared to an active control (SMD = -0.24; 95% CI [-0.50, 0.02]; p = 0.07, n = 2 RCTs, GRADE: very low). Mindfulness apps showed improvements in psychological stress that approached statistical significance among participants receiving the mindfulness mobile apps compared to those in the withheld control (SMD = -0.27; 95% CI [-0.56, 0.03]; p = .07, n = 4 RCTs, GRADE: very low). CBT apps also led to short-term improvements in depressive symptoms when compared to a withheld control (SMD = -0.40; 95% CI [-0.80, 0.01]; p = 0.05, n = 2 RCTs, GRADE: very low) and when compared to an active control (SMD = -0.59; 95% CI [-0.98, -0.19]; p = 0.003, n = 2 RCTs, GRADE: very low). CBT-based apps also improved symptoms of anxiety compared to a withheld control (SMD = -0.51; 95% CI [-0.94, -0.09]; p = 0.02, n = 3 RCTs, GRADE: very low) but not when compared to an active control (SMD = -0.26; 95% CI [-1.11, 0.59]; p = 0.55, n = 3 RCTs, GRADE: very low). Apps which combined mindfulness and CBT did not significantly improve symptoms of depression (SMD = -0.20; 95% CI [-0.42, 0.02]; p = 0.07, n = 2 RCTs, GRADE: very low) or anxiety (SMD = -0.21; 95% CI [-0.49, 0.07]; p = 0.14, n = 2 RCTs, GRADE: very low). However, these apps did improve psychological distress (SMD = -0.43; 95% CI [-0.74, -0.12]; p = 0.006, n = 2 RCTs, GRADE: very low). The results of trials on apps to reduce alcohol use were inconsistent. We did not identify any harms associated with the use of apps to manage mental health concerns. All effectiveness results had a very low certainty of evidence rating using the GRADE approach, meaning that apps which deliver therapy or other mental health support may reduce symptoms of depression, anxiety and psychological distress but the evidence is very uncertain. We reviewed evidence from 36 trials conducted among youth. According to our meta-analyses, the evidence is very uncertain about the effect of apps on depression, anxiety, psychological distress, and alcohol use. Very few effects were interpreted to be of clinical importance. Most of the RCTs were small studies focusing on efficacy for youth at risk for depressive symptoms. Larger trials are needed to evaluate effectiveness and allow for further analysis of subgroup differences. Longer trials are also needed to better estimate the clinical importance of these apps over the long term.
Magwood O ,Saad A ,Ranger D ,Volpini K ,Rukikamirera F ,Haridas R ,Sayfi S ,Alexander J ,Tan Y ,Pottie K ... - 《-》
被引量: - 发表:1970年 -
There is now a rising commitment to acknowledge the role patients and families play in contributing to their safety. This review focuses on one type of involvement in safety - patient and family involvement in escalation of care for serious life-threatening conditions i.e. helping secure a step-up to urgent or emergency care - which has been receiving increasing policy and practice attention. This review was concerned with the negotiation work that patient and family members undertake across the emergency care escalation pathway, once contact has been made with healthcare staff. It includes interventions aiming to improve detection of symptoms, communication of concerns and staff response to these concerns. To assess the effects of interventions designed to increase patient and family involvement in escalation of care for acute life-threatening illness on patient and family outcomes, treatment outcomes, clinical outcomes, patient and family experience and adverse events. We searched the Cochrane Central Register of Controlled Trials (CENTRAL, MEDLINE (OvidSP), Embase (OvidSP), PsycINFO (OvidSP) ClinicalTrials.gov and the World Health Organization (WHO) International Clinical Trials Registry Platform from 1 Jan 2000 to 24 August 2018. The search was updated on 21 October 2019. We included randomised controlled trials (RCTs) and cluster-randomised controlled trials where the intervention focused on patients and families working with healthcare professionals to ensure care received for acute deterioration was timely and appropriate. A key criterion was to include an interactive element of rehearsal, role play, modelling, shared language, group work etc. to the intervention to help patients and families have agency in the process of escalation of care. The interventions included components such as enabling patients and families to detect changes in patients' conditions and to speak up about these changes to staff. We also included studies where the intervention included a component targeted at enabling staff response. Seven of the eight authors were involved in screening; two review authors independently extracted data and assessed the risk of bias of included studies, with any disagreements resolved by discussion to reach consensus. Primary outcomes included patient and family outcomes, treatment outcomes, clinical outcomes, patient and family experience and adverse events. Our advisory group (four users and four providers) ensured that the review was of relevance and could inform policy and practice. We included nine studies involving 436,684 patients and family members and one ongoing study. The published studies focused on patients with specific conditions such as coronary artery disease, ischaemic stroke, and asthma, as well as pregnant women, inpatients on medical surgical wards, older adults and high-risk patients with a history of poor self-management. While all studies tested interventions versus usual care, for four studies the usual care group also received educational or information strategies. Seven of the interventions involved face-to-face, interactional education/coaching sessions aimed at patients/families while two provided multi-component education programmes which included components targeted at staff as well as patients/families. All of the interventions included: (1) an educational component about the acute condition and preparedness for future events such as stroke or change in fetal movements: (2) an engagement element (self-monitoring, action plans); while two additionally focused on shared language or communication skills. We had concerns about risk of bias for all but one of the included studies in respect of one or more criteria, particularly regarding blinding of participants and personnel. Our confidence in results regarding the effectiveness of interventions was moderate to low. Low-certainty evidence suggests that there may be moderate improvement in patients' knowledge of acute life-threatening conditions, danger signs, appropriate care-seeking responses, and preparedness capacity between interactional patient-facing interventions and multi-component programmes and usual care at 12 months (MD 4.20, 95% CI 2.44 to 5.97, 2 studies, 687 participants). Four studies in total assessed knowledge (3,086 participants) but we were unable to include two other studies in the pooled analysis due to differences in the way outcome measures were reported. One found no improvement in knowledge but higher symptom preparedness at 12 months. The other study found an improvement in patients' knowledge about symptoms and appropriate care-seeking responses in the intervention group at 18 months compared with usual care. Low-certainty evidence from two studies, each using a different measure, meant that we were unable to determine the effects of patient-based interventions on self-efficacy. Self-efficacy was higher in the intervention group in one study but there was no difference in the other compared with usual care. We are uncertain whether interactional patient-facing and multi-component programmes improve time from the start of patient symptoms to treatment due to low-certainty evidence for this outcome. We were unable to combine the data due to differences in outcome measures. Three studies found that arrival times or prehospital delay time was no different between groups. One found that delay time was shorter in the intervention group. Moderate-certainty evidence suggests that multi-component interventions probably have little or no impact on mortality rates. Only one study on a pregnant population was eligible for inclusion in the review, which found no difference between groups in rates of stillbirth. In terms of unintended events, we found that interactional patient-facing interventions to increase patient and family involvement in escalation of care probably have few adverse effects on patient's anxiety levels (moderate-certainty evidence). None of the studies measured or reported patient and family perceptions of involvement in escalation of care or patient and family experience of patient care. Reported outcomes related to healthcare professionals were also not reported in any studies. Our review identified that interactional patient-facing interventions and multi-component programmes (including staff) to increase patient and family involvement in escalation of care for acute life-threatening illness may improve patient and family knowledge about danger signs and care-seeking responses, and probably have few adverse effects on patient's anxiety levels when compared to usual care. Multi-component interventions probably have little impact on mortality rates. Further high-quality trials are required using multi-component interventions and a focus on relational elements of care. Cognitive and behavioural outcomes should be included at patient and staff level.
Mackintosh NJ ,Davis RE ,Easter A ,Rayment-Jones H ,Sevdalis N ,Wilson S ,Adams M ,Sandall J ... - 《Cochrane Database of Systematic Reviews》
被引量: 13 发表:1970年
加载更多
加载更多
加载更多