-
Interventions to increase patient and family involvement in escalation of care for acute life-threatening illness in community health and hospital settings.
There is now a rising commitment to acknowledge the role patients and families play in contributing to their safety. This review focuses on one type of involvement in safety - patient and family involvement in escalation of care for serious life-threatening conditions i.e. helping secure a step-up to urgent or emergency care - which has been receiving increasing policy and practice attention. This review was concerned with the negotiation work that patient and family members undertake across the emergency care escalation pathway, once contact has been made with healthcare staff. It includes interventions aiming to improve detection of symptoms, communication of concerns and staff response to these concerns.
To assess the effects of interventions designed to increase patient and family involvement in escalation of care for acute life-threatening illness on patient and family outcomes, treatment outcomes, clinical outcomes, patient and family experience and adverse events.
We searched the Cochrane Central Register of Controlled Trials (CENTRAL, MEDLINE (OvidSP), Embase (OvidSP), PsycINFO (OvidSP) ClinicalTrials.gov and the World Health Organization (WHO) International Clinical Trials Registry Platform from 1 Jan 2000 to 24 August 2018. The search was updated on 21 October 2019.
We included randomised controlled trials (RCTs) and cluster-randomised controlled trials where the intervention focused on patients and families working with healthcare professionals to ensure care received for acute deterioration was timely and appropriate. A key criterion was to include an interactive element of rehearsal, role play, modelling, shared language, group work etc. to the intervention to help patients and families have agency in the process of escalation of care. The interventions included components such as enabling patients and families to detect changes in patients' conditions and to speak up about these changes to staff. We also included studies where the intervention included a component targeted at enabling staff response.
Seven of the eight authors were involved in screening; two review authors independently extracted data and assessed the risk of bias of included studies, with any disagreements resolved by discussion to reach consensus. Primary outcomes included patient and family outcomes, treatment outcomes, clinical outcomes, patient and family experience and adverse events. Our advisory group (four users and four providers) ensured that the review was of relevance and could inform policy and practice.
We included nine studies involving 436,684 patients and family members and one ongoing study. The published studies focused on patients with specific conditions such as coronary artery disease, ischaemic stroke, and asthma, as well as pregnant women, inpatients on medical surgical wards, older adults and high-risk patients with a history of poor self-management. While all studies tested interventions versus usual care, for four studies the usual care group also received educational or information strategies. Seven of the interventions involved face-to-face, interactional education/coaching sessions aimed at patients/families while two provided multi-component education programmes which included components targeted at staff as well as patients/families. All of the interventions included: (1) an educational component about the acute condition and preparedness for future events such as stroke or change in fetal movements: (2) an engagement element (self-monitoring, action plans); while two additionally focused on shared language or communication skills. We had concerns about risk of bias for all but one of the included studies in respect of one or more criteria, particularly regarding blinding of participants and personnel. Our confidence in results regarding the effectiveness of interventions was moderate to low. Low-certainty evidence suggests that there may be moderate improvement in patients' knowledge of acute life-threatening conditions, danger signs, appropriate care-seeking responses, and preparedness capacity between interactional patient-facing interventions and multi-component programmes and usual care at 12 months (MD 4.20, 95% CI 2.44 to 5.97, 2 studies, 687 participants). Four studies in total assessed knowledge (3,086 participants) but we were unable to include two other studies in the pooled analysis due to differences in the way outcome measures were reported. One found no improvement in knowledge but higher symptom preparedness at 12 months. The other study found an improvement in patients' knowledge about symptoms and appropriate care-seeking responses in the intervention group at 18 months compared with usual care. Low-certainty evidence from two studies, each using a different measure, meant that we were unable to determine the effects of patient-based interventions on self-efficacy. Self-efficacy was higher in the intervention group in one study but there was no difference in the other compared with usual care. We are uncertain whether interactional patient-facing and multi-component programmes improve time from the start of patient symptoms to treatment due to low-certainty evidence for this outcome. We were unable to combine the data due to differences in outcome measures. Three studies found that arrival times or prehospital delay time was no different between groups. One found that delay time was shorter in the intervention group. Moderate-certainty evidence suggests that multi-component interventions probably have little or no impact on mortality rates. Only one study on a pregnant population was eligible for inclusion in the review, which found no difference between groups in rates of stillbirth. In terms of unintended events, we found that interactional patient-facing interventions to increase patient and family involvement in escalation of care probably have few adverse effects on patient's anxiety levels (moderate-certainty evidence). None of the studies measured or reported patient and family perceptions of involvement in escalation of care or patient and family experience of patient care. Reported outcomes related to healthcare professionals were also not reported in any studies.
Our review identified that interactional patient-facing interventions and multi-component programmes (including staff) to increase patient and family involvement in escalation of care for acute life-threatening illness may improve patient and family knowledge about danger signs and care-seeking responses, and probably have few adverse effects on patient's anxiety levels when compared to usual care. Multi-component interventions probably have little impact on mortality rates. Further high-quality trials are required using multi-component interventions and a focus on relational elements of care. Cognitive and behavioural outcomes should be included at patient and staff level.
Mackintosh NJ
,Davis RE
,Easter A
,Rayment-Jones H
,Sevdalis N
,Wilson S
,Adams M
,Sandall J
... -
《Cochrane Database of Systematic Reviews》
-
Conservative, physical and surgical interventions for managing faecal incontinence and constipation in adults with central neurological diseases.
People with central neurological disease or injury have a much higher risk of both faecal incontinence (FI) and constipation than the general population. There is often a fine line between the two symptoms, with management intended to ameliorate one risking precipitating the other. Bowel problems are observed to be the cause of much anxiety and may reduce quality of life in these people. Current bowel management is largely empirical, with a limited research base. The review is relevant to individuals with any disease directly and chronically affecting the central nervous system (post-traumatic, degenerative, ischaemic or neoplastic), such as multiple sclerosis, spinal cord injury, cerebrovascular disease, Parkinson's disease and Alzheimer's disease. This is an update of a Cochrane Review first published in 2001 and subsequently updated in 2003, 2006 and 2014.
To assess the effects of conservative, physical and surgical interventions for managing FI and constipation in people with a neurological disease or injury affecting the central nervous system.
We searched the Cochrane Incontinence Specialised Register (searched 27 March 2023), which includes searches of the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, MEDLINE In-Process, MEDLINE Epub Ahead of Print, ClinicalTrials.gov, WHO ICTRP as well as handsearching of journals and conference proceedings; and all reference lists of relevant articles.
We included randomised, quasi-randomised (where allocation is not strictly random), cross-over and cluster-randomised trials evaluating any type of conservative, physical or surgical intervention against placebo, usual care or no intervention for the management of FI and constipation in people with central neurological disease or injury.
At least two review authors independently assessed the risk of bias in eligible trials using Cochrane's 'Risk of bias' tool and independently extracted data from the included trials using a range of prespecified outcome measures. We produced summary of findings tables for our main outcome measures and assessed the certainty of the evidence using GRADE.
We included 25 studies with 1598 participants. The studies were generally at high risk of bias due to lack of blinding of participants and personnel to the intervention. Half of the included studies were also at high risk of bias in terms of selective reporting. Outcomes were often reported heterogeneously across studies, making it difficult to pool data. We did not find enough evidence to be able to analyse the effects of interventions on individual central neurological diseases. Additionally, very few studies reported on the primary outcomes of self-reported improvement in FI or constipation, or Neurogenic Bowel Dysfunction Score. Conservative interventions compared with usual care, no active treatment or placebo Thirteen studies assessed this comparison. The interventions included assessment-based nursing, holistic nursing, probiotics, psyllium, faecal microbiota transplantation, and a stepwise protocol of increasingly invasive evacuation methods. Conservative interventions may result in a large improvement in faecal incontinence (standardised mean difference (SMD) -1.85, 95% confidence interval (CI) -3.47 to -0.23; 3 studies; n = 410; low-certainty evidence). We interpreted SMD ≥ 0.80 as a large effect. It was not possible to pool all data from studies that assessed improvement in constipation, but the evidence suggested that conservative interventions may improve constipation symptoms (data not pooled; 8 studies; n = 612; low-certainty evidence). Conservative interventions may lead to a reduction in mean time taken on bowel care (data not pooled; 5 studies; n = 526; low-certainty evidence). The evidence is uncertain about the effects of conservative interventions on condition-specific quality of life and adverse events. Neurogenic Bowel Dysfunction Score was not reported. Physical therapy compared with usual care, no active treatment or placebo Twelve studies assessed this comparison. The interventions included massage therapy, standing, osteopathic manipulative treatment, electrical stimulation, transanal irrigation, and conventional physical therapy with visceral mobilisation. Physical therapies may make little to no difference to self-reported faecal continence assessed using the St Mark's Faecal Incontinence Score, where the minimally important difference is five, or the Cleveland Constipation Score (MD -2.60, 95% CI -4.91 to -0.29; 3 studies; n = 155; low-certainty evidence). Physical therapies may result in a moderate improvement in constipation symptoms (SMD -0.62, 95% CI -1.10 to -0.14; 9 studies; n = 431; low-certainty evidence). We interpreted SMD ≥ 0.5 as a moderate effect. However, physical therapies may make little to no difference in Neurogenic Bowel Dysfunction Score as the minimally important difference for this tool is 3 (MD -1.94, 95% CI -3.36 to -0.51; 7 studies; n = 358; low-certainty evidence). We are very uncertain about the effects of physical therapies on the time spent on bowel care, condition-specific quality of life and adverse effects (all very low-certainty evidence). Surgical interventions compared with usual care, no active treatment or placebo No studies were found for surgical interventions that met the inclusion criteria for this review.
There remains little research on this common and, for patients, very significant issue of bowel management. The available evidence is almost uniformly of low methodological quality. The clinical significance of some of the research findings presented here is difficult to interpret, not least because each intervention has only been addressed in individual trials, against control rather than compared against each other, and the interventions are very different from each other. Understanding whether there is a clinically-meaningful difference from the results of available trials is largely hampered by the lack of uniform outcome measures. This is due to an absence of core outcome sets, and development of these needs to be a research priority to allow studies to be compared directly. Some studies used validated constipation, incontinence or condition-specific measures; however, others used unvalidated analogue scales to report effectiveness. Some studies did not use any patient-reported outcomes and focused on physiological outcome measures, which is of relatively limited significance in terms of clinical implementation. There was evidence in favour of some conservative interventions, but these findings need to be confirmed by larger, well-designed controlled trials, which should include evaluation of the acceptability of the intervention to patients and the effect on their quality of life.
Todd CL
,Johnson EE
,Stewart F
,Wallace SA
,Bryant A
,Woodward S
,Norton C
... -
《Cochrane Database of Systematic Reviews》
-
Falls prevention interventions for community-dwelling older adults: systematic review and meta-analysis of benefits, harms, and patient values and preferences.
About 20-30% of older adults (≥ 65 years old) experience one or more falls each year, and falls are associated with substantial burden to the health care system, individuals, and families from resulting injuries, fractures, and reduced functioning and quality of life. Many interventions for preventing falls have been studied, and their effectiveness, factors relevant to their implementation, and patient preferences may determine which interventions to use in primary care. The aim of this set of reviews was to inform recommendations by the Canadian Task Force on Preventive Health Care (task force) on fall prevention interventions. We undertook three systematic reviews to address questions about the following: (i) the benefits and harms of interventions, (ii) how patients weigh the potential outcomes (outcome valuation), and (iii) patient preferences for different types of interventions, and their attributes, shown to offer benefit (intervention preferences).
We searched four databases for benefits and harms (MEDLINE, Embase, AgeLine, CENTRAL, to August 25, 2023) and three for outcome valuation and intervention preferences (MEDLINE, PsycINFO, CINAHL, to June 9, 2023). For benefits and harms, we relied heavily on a previous review for studies published until 2016. We also searched trial registries, references of included studies, and recent reviews. Two reviewers independently screened studies. The population of interest was community-dwelling adults ≥ 65 years old. We did not limit eligibility by participant fall history. The task force rated several outcomes, decided on their eligibility, and provided input on the effect thresholds to apply for each outcome (fallers, falls, injurious fallers, fractures, hip fractures, functional status, health-related quality of life, long-term care admissions, adverse effects, serious adverse effects). For benefits and harms, we included a broad range of non-pharmacological interventions relevant to primary care. Although usual care was the main comparator of interest, we included studies comparing interventions head-to-head and conducted a network meta-analysis (NMAs) for each outcome, enabling analysis of interventions lacking direct comparisons to usual care. For benefits and harms, we included randomized controlled trials with a minimum 3-month follow-up and reporting on one of our fall outcomes (fallers, falls, injurious fallers); for the other questions, we preferred quantitative data but considered qualitative findings to fill gaps in evidence. No date limits were applied for benefits and harms, whereas for outcome valuation and intervention preferences we included studies published in 2000 or later. All data were extracted by one trained reviewer and verified for accuracy and completeness. For benefits and harms, we relied on the previous review team's risk-of-bias assessments for benefit outcomes, but otherwise, two reviewers independently assessed the risk of bias (within and across study). For the other questions, one reviewer verified another's assessments. Consensus was used, with adjudication by a lead author when necessary. A coding framework, modified from the ProFANE taxonomy, classified interventions and their attributes (e.g., supervision, delivery format, duration/intensity). For benefit outcomes, we employed random-effects NMA using a frequentist approach and a consistency model. Transitivity and coherence were assessed using meta-regressions and global and local coherence tests, as well as through graphical display and descriptive data on the composition of the nodes with respect to major pre-planned effect modifiers. We assessed heterogeneity using prediction intervals. For intervention-related adverse effects, we pooled proportions except for vitamin D for which we considered data in the control groups and undertook random-effects pairwise meta-analysis using a relative risk (any adverse effects) or risk difference (serious adverse effects). For outcome valuation, we pooled disutilities (representing the impact of a negative event, e.g. fall, on one's usual quality of life, with 0 = no impact and 1 = death and ~ 0.05 indicating important disutility) from the EQ-5D utility measurement using the inverse variance method and a random-effects model and explored heterogeneity. When studies only reported other data, we compared the findings with our main analysis. For intervention preferences, we used a coding schema identifying whether there were strong, clear, no, or variable preferences within, and then across, studies. We assessed the certainty of evidence for each outcome using CINeMA for benefit outcomes and GRADE for all other outcomes.
A total of 290 studies were included across the reviews, with two studies included in multiple questions. For benefits and harms, we included 219 trials reporting on 167,864 participants and created 59 interventions (nodes). Transitivity and coherence were assessed as adequate. Across eight NMAs, the number of contributing trials ranged between 19 and 173, and the number of interventions ranged from 19 to 57. Approximately, half of the interventions in each network had at least low certainty for benefit. The fallers outcome had the highest number of interventions with moderate certainty for benefit (18/57). For the non-fall outcomes (fractures, hip fracture, long-term care [LTC] admission, functional status, health-related quality of life), many interventions had very low certainty evidence, often from lack of data. We prioritized findings from 21 interventions where there was moderate certainty for at least some benefit. Fourteen of these had a focus on exercise, the majority being supervised (for > 2 sessions) and of long duration (> 3 months), and with balance/resistance and group Tai Chi interventions generally having the most outcomes with at least low certainty for benefit. None of the interventions having moderate certainty evidence focused on walking. Whole-body vibration or home-hazard assessment (HHA) plus exercise provided to everyone showed moderate certainty for some benefit. No multifactorial intervention alone showed moderate certainty for any benefit. Six interventions only had very-low certainty evidence for the benefit outcomes. Two interventions had moderate certainty of harmful effects for at least one benefit outcome, though the populations across studies were at high risk for falls. Vitamin D and most single-component exercise interventions are probably associated with minimal adverse effects. Some uncertainty exists about possible adverse effects from other interventions. For outcome valuation, we included 44 studies of which 34 reported EQ-5D disutilities. Admission to long-term care had the highest disutility (1.0), but the evidence was rated as low certainty. Both fall-related hip (moderate certainty) and non-hip (low certainty) fracture may result in substantial disutility (0.53 and 0.57) in the first 3 months after injury. Disutility for both hip and non-hip fractures is probably lower 12 months after injury (0.16 and 0.19, with high and moderate certainty, respectively) compared to within the first 3 months. No study measured the disutility of an injurious fall. Fractures are probably more important than either falls (0.09 over 12 months) or functional status (0.12). Functional status may be somewhat more important than falls. For intervention preferences, 29 studies (9 qualitative) reported on 17 comparisons among single-component interventions showing benefit. Exercise interventions focusing on balance and/or resistance training appear to be clearly preferred over Tai Chi and other forms of exercise (e.g., yoga, aerobic). For exercise programs in general, there is probably variability among people in whether they prefer group or individual delivery, though there was high certainty that individual was preferred over group delivery of balance/resistance programs. Balance/resistance exercise may be preferred over education, though the evidence was low certainty. There was low certainty for a slight preference for education over cognitive-behavioral therapy, and group education may be preferred over individual education.
To prevent falls among community-dwelling older adults, evidence is most certain for benefit, at least over 1-2 years, from supervised, long-duration balance/resistance and group Tai Chi interventions, whole-body vibration, high-intensity/dose education or cognitive-behavioral therapy, and interventions of comprehensive multifactorial assessment with targeted treatment plus HHA, HHA plus exercise, or education provided to everyone. Adding other interventions to exercise does not appear to substantially increase benefits. Overall, effects appear most applicable to those with elevated fall risk. Choice among effective interventions that are available may best depend on individual patient preferences, though when implementing new balance/resistance programs delivering individual over group sessions when feasible may be most acceptable. Data on more patient-important outcomes including fall-related fractures and adverse effects would be beneficial, as would studies focusing on equity-deserving populations and on programs delivered virtually.
Not registered.
Pillay J
,Gaudet LA
,Saba S
,Vandermeer B
,Ashiq AR
,Wingert A
,Hartling L
... -
《Systematic Reviews》
-
Comprehensive care programmes for children with medical complexity.
Children with medical complexity (CMC) represent a small, but growing, proportion of all children. Regardless of their underlying diagnosis, by definition, all CMC have similar functional limitations and high healthcare needs. It has been suggested that improving aspects of healthcare delivery for CMC improves health- and quality of life-related outcomes for children and their families and reduces healthcare-related expenditure. As a result, dedicated comprehensive care programmes have been established at many hospitals to meet the needs of CMC; however, it is unclear if such programmes are effective.
Our main objective was to assess the effectiveness of comprehensive care programmes that aim to improve care coordination and other aspects of health care for CMC and to assess whether the effectiveness of such programmes differs according to the programme setting and structure. We aimed to assess their effectiveness in relation to child and parent health, functioning, and quality of life, quality of care, number of healthcare encounters, unmet healthcare needs, and total healthcare-related costs.
We searched CENTRAL, MEDLINE, Embase, and CINAHL in May 2023. We also searched reference lists, trial registries, and the grey literature.
Randomised and non-randomised trials, controlled before-after studies, and interrupted time series studies were included. Studies that compared enrolment in a comprehensive care programme with non-enrolment in such a programme/treatment as usual were included. Participants were children that met the criteria for the definition of CMC, which is: having (i) a chronic condition, (ii) functional limitations, (iii) increased health and other service needs, and (iv) increased healthcare costs. Studies that included the following types of outcomes were included: health; quality of care; utilisation, coverage and access; resource use and costs; equity; and adverse outcomes.
Two review authors independently extracted data, assessed the risk of bias in each included study, and evaluated the certainty of evidence according to GRADE criteria. Where possible, data were represented in forest plots and pooled. We were unable to undertake a meta-analysis for comparisons and outcomes, so we used a structured synthesis approach.
We included four studies with a total of 912 CMC as participants. All included studies were randomised controlled trials conducted in hospitals in the USA or Canada. Participants varied across the included studies; however, all four studies included children with complex and chronic illness and high healthcare needs. While the primary aim of the intervention was similar across all four studies, the components of the interventions differed: in the four studies, the intervention involved some element of care coordination; in two of the studies, it involved the child receiving care from a multidisciplinary team, while in one study, the intervention was primarily centred on access to an advanced practice nurse care coordinator and another study involved nurse a practitioner-paediatrician dyad partnering with families. The risk of bias in the four studies varied across domains, with issues primarily relating to the lack of blinding of participants, personnel, and outcome assessors, inadequate allocation concealment, and incomplete outcome data. Comprehensive care for CMC compared to usual care may make little to no difference to child health, functioning, and quality of life at 12 or 24 months (three studies with 404 participants) and we assessed the evidence for the outcomes in this category (child health-related quality of life and functional status) as being of low certainty. For CMC, comprehensive care probably makes little or no difference to parent health, functioning, and quality of life compared to usual care at 12 months (one study with 117 participants) and we assessed the evidence for this outcome as being of moderate certainty. Comprehensive care for CMC compared to usual care may slightly improve child and family satisfaction with, and perceptions of, care and service delivery at 12 months (three studies with 453 participants); however, we assessed the evidence for these outcomes as being of low certainty. For CMC, comprehensive care probably makes little or no difference to the number of healthcare encounters (emergency department visits) and the number of hospitalised days (hospital admissions) compared to usual care at 12 months (three studies with 668 participants), and we assessed the evidence for these outcomes as being of moderate certainty. Three of the included studies (668 participants) reported cost outcomes and had conflicting results, with one study reporting significantly lower healthcare costs at 12 months in the intervention group compared to the control group, one reporting no differences between groups, and the other study reporting a greater increase in total healthcare costs in the intervention group compared to the control group. Overall, comprehensive care may make little or no difference to overall healthcare costs in CMC; however, the methods used to measure total healthcare costs varied across studies and the certainty of the evidence relating to this outcome is low. No studies assessed the costs to the family.
The findings of this review should be treated with caution due to the limited amount and quality of the published research that was available to be included. Overall, the certainty of the evidence for the effectiveness of comprehensive care for CMC ranged from low to moderate across outcomes and there is currently insufficient evidence on which to draw strong conclusions. There is a need for more high-quality randomised trials with consistency of the target population and intervention components, methods of reporting outcomes, and follow-up periods, as well as full cost analyses, taking into account both costs to the family and costs to the healthcare system.
Harvey AR
,Meehan E
,Merrick N
,D'Aprano AL
,Cox GR
,Williams K
,Gibb SM
,Mountford NJ
,Connell TG
,Cohen E
... -
《Cochrane Database of Systematic Reviews》
-
Workplace interventions to reduce the risk of SARS-CoV-2 infection outside of healthcare settings.
Although many people infected with SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) experience no or mild symptoms, some individuals can develop severe illness and may die, particularly older people and those with underlying medical problems. Providing evidence-based interventions to prevent SARS-CoV-2 infection has become more urgent with the potential psychological toll imposed by the coronavirus disease 2019 (COVID-19) pandemic. Controlling exposures to occupational hazards is the fundamental method of protecting workers. When it comes to the transmission of viruses, workplaces should first consider control measures that can potentially have the most significant impact. According to the hierarchy of controls, one should first consider elimination (and substitution), then engineering controls, administrative controls, and lastly, personal protective equipment. This is the first update of a Cochrane review published 6 May 2022, with one new study added.
To assess the benefits and harms of interventions in non-healthcare-related workplaces aimed at reducing the risk of SARS-CoV-2 infection compared to other interventions or no intervention.
We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, Web of Science Core Collections, Cochrane COVID-19 Study Register, World Health Organization (WHO) COVID-19 Global literature on coronavirus disease, ClinicalTrials.gov, the WHO International Clinical Trials Registry Platform, and medRxiv to 13 April 2023.
We included randomised controlled trials (RCTs) and non-randomised studies of interventions. We included adult workers, both those who come into close contact with clients or customers (e.g. public-facing employees, such as cashiers or taxi drivers), and those who do not, but who could be infected by coworkers. We excluded studies involving healthcare workers. We included any intervention to prevent or reduce workers' exposure to SARS-CoV-2 in the workplace, defining categories of intervention according to the hierarchy of hazard controls (i.e. elimination; engineering controls; administrative controls; personal protective equipment).
We used standard Cochrane methods. Our primary outcomes were incidence rate of SARS-CoV-2 infection (or other respiratory viruses), SARS-CoV-2-related mortality, adverse events, and absenteeism from work. Our secondary outcomes were all-cause mortality, quality of life, hospitalisation, and uptake, acceptability, or adherence to strategies. We used the Cochrane RoB 2 tool to assess risk of bias, and GRADE methods to evaluate the certainty of evidence for each outcome.
We identified 2 studies including a total of 16,014 participants. Elimination-of-exposure interventions We included one study examining an intervention that focused on elimination of hazards, which was an open-label, cluster-randomised, non-inferiority trial, conducted in England in 2021. The study compared standard 10-day self-isolation after contact with an infected person to a new strategy of daily rapid antigen testing and staying at work if the test is negative (test-based attendance). The trialists hypothesised that this would lead to a similar rate of infections, but lower COVID-related absence. Staff (N = 11,798) working at 76 schools were assigned to standard isolation, and staff (N = 12,229) working at 86 schools were assigned to the test-based attendance strategy. The results between test-based attendance and standard 10-day self-isolation were inconclusive for the rate of symptomatic polymerase chain reaction (PCR)-positive SARS-CoV-2 infection (rate ratio (RR) 1.28, 95% confidence interval (CI) 0.74 to 2.21; 1 study; very low-certainty evidence). The results between test-based attendance and standard 10-day self-isolation were inconclusive for the rate of any PCR-positive SARS-CoV-2 infection (RR 1.35, 95% CI 0.82 to 2.21; 1 study; very low-certainty evidence). COVID-related absenteeism rates were 3704 absence days in 566,502 days-at-risk (6.5 per 1000 working days) in the control group and 2932 per 539,805 days-at-risk (5.4 per 1000 working days) in the intervention group (RR 0.83, 95% CI 0.55 to 1.25). We downgraded the certainty of the evidence to low due to imprecision. Uptake of the intervention was 71% in the intervention group, but not reported for the control intervention. The trial did not measure our other outcomes of SARS-CoV-2-related mortality, adverse events, all-cause mortality, quality of life, or hospitalisation. We found seven ongoing studies using elimination-of-hazard strategies, six RCTs and one non-randomised trial. Administrative control interventions We found one ongoing RCT that aims to evaluate the efficacy of the Bacillus Calmette-Guérin (BCG) vaccine in preventing COVID-19 infection and reducing disease severity. Combinations of eligible interventions We included one non-randomised study examining a combination of elimination of hazards, administrative controls, and personal protective equipment. The study was conducted in two large retail companies in Italy in 2020. The study compared a safety operating protocol, measurement of body temperature and oxygen saturation upon entry, and a SARS-CoV-2 test strategy with a minimum activity protocol. Both groups received protective equipment. All employees working at the companies during the study period were included: 1987 in the intervention company and 1798 in the control company. The study did not report an outcome of interest for this systematic review. Other intervention categories We did not find any studies in this category.
We are uncertain whether a test-based attendance policy affects rates of PCR-positive SARS-CoV-2 infection (any infection; symptomatic infection) compared to standard 10-day self-isolation amongst school and college staff. A test-based attendance policy may result in little to no difference in absenteeism rates compared to standard 10-day self-isolation. The non-randomised study included in our updated search did not report any outcome of interest for this Cochrane review. As a large part of the population is exposed in the case of a pandemic, an apparently small relative effect that would not be worthwhile from the individual perspective may still affect many people, and thus become an important absolute effect from the enterprise or societal perspective. The included RCT did not report on any of our other primary outcomes (i.e. SARS-CoV-2-related mortality and adverse events). We identified no completed studies on any other interventions specified in this review; however, eight eligible studies are ongoing. More controlled studies are needed on testing and isolation strategies, and working from home, as these have important implications for work organisations.
Constantin AM
,Noertjojo K
,Sommer I
,Pizarro AB
,Persad E
,Durao S
,Nussbaumer-Streit B
,McElvenny DM
,Rhodes S
,Martin C
,Sampson O
,Jørgensen KJ
,Bruschettini M
... -
《Cochrane Database of Systematic Reviews》