-
Mobile health (m-health) smartphone interventions for adolescents and adults with overweight or obesity.
Obesity is considered to be a risk factor for various diseases, and its incidence has tripled worldwide since 1975. In addition to potentially being at risk for adverse health outcomes, people with overweight or obesity are often stigmatised. Behaviour change interventions are increasingly delivered as mobile health (m-health) interventions, using smartphone apps and wearables. They are believed to support healthy behaviours at the individual level in a low-threshold manner.
To assess the effects of integrated smartphone applications for adolescents and adults with overweight or obesity.
We searched CENTRAL, MEDLINE, PsycINFO, CINAHL, and LILACS, as well as the trials registers ClinicalTrials.gov and World Health Organization International Clinical Trials Registry Platform on 2 October 2023 (date of last search for all databases). We placed no restrictions on the language of publication.
Participants were adolescents and adults with overweight or obesity. Eligible interventions were integrated smartphone apps using at least two behaviour change techniques. The intervention could target physical activity, cardiorespiratory fitness, weight loss, healthy diet, or self-efficacy. Comparators included no or minimal intervention (NMI), a different smartphone app, personal coaching, or usual care. Eligible studies were randomised controlled trials of any duration with a follow-up of at least three months.
We used standard Cochrane methodology and the RoB 2 tool. Important outcomes were physical activity, body mass index (BMI) and weight, health-related quality of life, self-efficacy, well-being, change in dietary behaviour, and adverse events. We focused on presenting studies with medium- (6 to < 12 months) and long-term (≥ 12 months) outcomes in our summary of findings table, following recommendations in the core outcome set for behavioural weight management interventions.
We included 18 studies with 2703 participants. Interventions lasted from 2 to 24 months. The mean BMI in adults ranged from 27 to 50, and the median BMI z-score in adolescents ranged from 2.2 to 2.5. Smartphone app versus no or minimal intervention Thirteen studies compared a smartphone app versus NMI in adults; no studies were available for adolescents. The comparator comprised minimal health advice, handouts, food diaries, smartphone apps unrelated to weight loss, and waiting list. Measures of physical activity: at 12 months' follow-up, a smartphone app compared to NMI probably reduces moderate to vigorous physical activity (MVPA) slightly (mean difference (MD) -28.9 min/week (95% confidence interval (CI) -85.9 to 28; 1 study, 650 participants; moderate-certainty evidence)). We are very uncertain about the results of estimated energy expenditure and cardiorespiratory fitness at eight months' follow-up. A smartphone app compared with NMI probably results in little to no difference in changes in total activity time at 12 months' follow-up and leisure time physical activity at 24 months' follow-up. Anthropometric measures: a smartphone app compared with NMI may reduce BMI (MD of BMI change -2.6 kg/m2, 95% CI -6 to 0.8; 2 studies, 146 participants; very low-certainty evidence) at six to eight months' follow-up, but the evidence is very uncertain. At 12 months' follow-up, a smartphone app probably resulted in little to no difference in BMI change (MD -0.1 kg/m2, 95% CI -0.4 to 0.3; 1 study; 650 participants; moderate-certainty evidence). A smartphone app compared with NMI may result in little to no difference in body weight change (MD -2.5 kg, 95% CI -6.8 to 1.7; 3 studies, 1044 participants; low-certainty evidence) at 12 months' follow-up. At 24 months' follow-up, a smartphone app probably resulted in little to no difference in body weight change (MD 0.7 kg, 95% CI -1.2 to 2.6; 1 study, 245 participants; moderate-certainty evidence). A smartphone app compared with NMI may result in little to no difference in self-efficacy for a physical activity score at eight months' follow-up, but the results are very uncertain. A smartphone app probably results in little to no difference in quality of life and well-being at 12 months (moderate-certainty evidence) and in little to no difference in various measures used to inform dietary behaviour at 12 and 24 months' follow-up. We are very uncertain about adverse events, which were only reported narratively in two studies (very low-certainty evidence). Smartphone app versus another smartphone app Two studies compared different versions of the same app in adults, showing no or minimal differences in outcomes. One study in adults compared two different apps (calorie counting versus ketogenic diet) and suggested a slight reduction in body weight at six months in favour of the ketogenic diet app. No studies were available for adolescents. Smartphone app versus personal coaching Only one study compared a smartphone app with personal coaching in adults, presenting data at three months. Two studies compared these interventions in adolescents. A smartphone app resulted in little to no difference in BMI z-score compared to personal coaching at six months' follow-up (MD 0, 95% CI -0.2 to 0.2; 1 study; 107 participants). Smartphone app versus usual care Only one study compared an app with usual care in adults but only reported data at three months on participant satisfaction. No studies were available for adolescents. We identified 34 ongoing studies.
The available evidence is limited and does not demonstrate a clear benefit of smartphone applications as interventions for adolescents or adults with overweight or obesity. While the number of studies is growing, the evidence remains incomplete due to the high variability of the apps' features, content and components, which complicates direct comparisons and assessment of their effectiveness. Comparisons with either no or minimal intervention or personal coaching show minor effects, which are mostly not clinically significant. Minimal data for adolescents also warrants further research. Evidence is also scarce for low- and middle-income countries as well as for people with different socio-economic and cultural backgrounds. The 34 ongoing studies suggest sustained interest in the topic, with new evidence expected to emerge within the next two years. In practice, clinicians and healthcare practitioners should carefully consider the potential benefits, limitations, and evolving research when recommending smartphone apps to adolescents and adults with overweight or obesity.
Metzendorf MI
,Wieland LS
,Richter B
《Cochrane Database of Systematic Reviews》
-
Falls prevention interventions for community-dwelling older adults: systematic review and meta-analysis of benefits, harms, and patient values and preferences.
About 20-30% of older adults (≥ 65 years old) experience one or more falls each year, and falls are associated with substantial burden to the health care system, individuals, and families from resulting injuries, fractures, and reduced functioning and quality of life. Many interventions for preventing falls have been studied, and their effectiveness, factors relevant to their implementation, and patient preferences may determine which interventions to use in primary care. The aim of this set of reviews was to inform recommendations by the Canadian Task Force on Preventive Health Care (task force) on fall prevention interventions. We undertook three systematic reviews to address questions about the following: (i) the benefits and harms of interventions, (ii) how patients weigh the potential outcomes (outcome valuation), and (iii) patient preferences for different types of interventions, and their attributes, shown to offer benefit (intervention preferences).
We searched four databases for benefits and harms (MEDLINE, Embase, AgeLine, CENTRAL, to August 25, 2023) and three for outcome valuation and intervention preferences (MEDLINE, PsycINFO, CINAHL, to June 9, 2023). For benefits and harms, we relied heavily on a previous review for studies published until 2016. We also searched trial registries, references of included studies, and recent reviews. Two reviewers independently screened studies. The population of interest was community-dwelling adults ≥ 65 years old. We did not limit eligibility by participant fall history. The task force rated several outcomes, decided on their eligibility, and provided input on the effect thresholds to apply for each outcome (fallers, falls, injurious fallers, fractures, hip fractures, functional status, health-related quality of life, long-term care admissions, adverse effects, serious adverse effects). For benefits and harms, we included a broad range of non-pharmacological interventions relevant to primary care. Although usual care was the main comparator of interest, we included studies comparing interventions head-to-head and conducted a network meta-analysis (NMAs) for each outcome, enabling analysis of interventions lacking direct comparisons to usual care. For benefits and harms, we included randomized controlled trials with a minimum 3-month follow-up and reporting on one of our fall outcomes (fallers, falls, injurious fallers); for the other questions, we preferred quantitative data but considered qualitative findings to fill gaps in evidence. No date limits were applied for benefits and harms, whereas for outcome valuation and intervention preferences we included studies published in 2000 or later. All data were extracted by one trained reviewer and verified for accuracy and completeness. For benefits and harms, we relied on the previous review team's risk-of-bias assessments for benefit outcomes, but otherwise, two reviewers independently assessed the risk of bias (within and across study). For the other questions, one reviewer verified another's assessments. Consensus was used, with adjudication by a lead author when necessary. A coding framework, modified from the ProFANE taxonomy, classified interventions and their attributes (e.g., supervision, delivery format, duration/intensity). For benefit outcomes, we employed random-effects NMA using a frequentist approach and a consistency model. Transitivity and coherence were assessed using meta-regressions and global and local coherence tests, as well as through graphical display and descriptive data on the composition of the nodes with respect to major pre-planned effect modifiers. We assessed heterogeneity using prediction intervals. For intervention-related adverse effects, we pooled proportions except for vitamin D for which we considered data in the control groups and undertook random-effects pairwise meta-analysis using a relative risk (any adverse effects) or risk difference (serious adverse effects). For outcome valuation, we pooled disutilities (representing the impact of a negative event, e.g. fall, on one's usual quality of life, with 0 = no impact and 1 = death and ~ 0.05 indicating important disutility) from the EQ-5D utility measurement using the inverse variance method and a random-effects model and explored heterogeneity. When studies only reported other data, we compared the findings with our main analysis. For intervention preferences, we used a coding schema identifying whether there were strong, clear, no, or variable preferences within, and then across, studies. We assessed the certainty of evidence for each outcome using CINeMA for benefit outcomes and GRADE for all other outcomes.
A total of 290 studies were included across the reviews, with two studies included in multiple questions. For benefits and harms, we included 219 trials reporting on 167,864 participants and created 59 interventions (nodes). Transitivity and coherence were assessed as adequate. Across eight NMAs, the number of contributing trials ranged between 19 and 173, and the number of interventions ranged from 19 to 57. Approximately, half of the interventions in each network had at least low certainty for benefit. The fallers outcome had the highest number of interventions with moderate certainty for benefit (18/57). For the non-fall outcomes (fractures, hip fracture, long-term care [LTC] admission, functional status, health-related quality of life), many interventions had very low certainty evidence, often from lack of data. We prioritized findings from 21 interventions where there was moderate certainty for at least some benefit. Fourteen of these had a focus on exercise, the majority being supervised (for > 2 sessions) and of long duration (> 3 months), and with balance/resistance and group Tai Chi interventions generally having the most outcomes with at least low certainty for benefit. None of the interventions having moderate certainty evidence focused on walking. Whole-body vibration or home-hazard assessment (HHA) plus exercise provided to everyone showed moderate certainty for some benefit. No multifactorial intervention alone showed moderate certainty for any benefit. Six interventions only had very-low certainty evidence for the benefit outcomes. Two interventions had moderate certainty of harmful effects for at least one benefit outcome, though the populations across studies were at high risk for falls. Vitamin D and most single-component exercise interventions are probably associated with minimal adverse effects. Some uncertainty exists about possible adverse effects from other interventions. For outcome valuation, we included 44 studies of which 34 reported EQ-5D disutilities. Admission to long-term care had the highest disutility (1.0), but the evidence was rated as low certainty. Both fall-related hip (moderate certainty) and non-hip (low certainty) fracture may result in substantial disutility (0.53 and 0.57) in the first 3 months after injury. Disutility for both hip and non-hip fractures is probably lower 12 months after injury (0.16 and 0.19, with high and moderate certainty, respectively) compared to within the first 3 months. No study measured the disutility of an injurious fall. Fractures are probably more important than either falls (0.09 over 12 months) or functional status (0.12). Functional status may be somewhat more important than falls. For intervention preferences, 29 studies (9 qualitative) reported on 17 comparisons among single-component interventions showing benefit. Exercise interventions focusing on balance and/or resistance training appear to be clearly preferred over Tai Chi and other forms of exercise (e.g., yoga, aerobic). For exercise programs in general, there is probably variability among people in whether they prefer group or individual delivery, though there was high certainty that individual was preferred over group delivery of balance/resistance programs. Balance/resistance exercise may be preferred over education, though the evidence was low certainty. There was low certainty for a slight preference for education over cognitive-behavioral therapy, and group education may be preferred over individual education.
To prevent falls among community-dwelling older adults, evidence is most certain for benefit, at least over 1-2 years, from supervised, long-duration balance/resistance and group Tai Chi interventions, whole-body vibration, high-intensity/dose education or cognitive-behavioral therapy, and interventions of comprehensive multifactorial assessment with targeted treatment plus HHA, HHA plus exercise, or education provided to everyone. Adding other interventions to exercise does not appear to substantially increase benefits. Overall, effects appear most applicable to those with elevated fall risk. Choice among effective interventions that are available may best depend on individual patient preferences, though when implementing new balance/resistance programs delivering individual over group sessions when feasible may be most acceptable. Data on more patient-important outcomes including fall-related fractures and adverse effects would be beneficial, as would studies focusing on equity-deserving populations and on programs delivered virtually.
Not registered.
Pillay J
,Gaudet LA
,Saba S
,Vandermeer B
,Ashiq AR
,Wingert A
,Hartling L
... -
《Systematic Reviews》
-
Treatment for women with postpartum iron deficiency anaemia.
Postpartum iron deficiency anaemia is caused by antenatal iron deficiency or excessive blood loss at delivery and might affect up to 50% of labouring women in low- and middle-income countries. Effective and safe treatment during early motherhood is important for maternal well-being and newborn care. Treatment options include oral iron supplementation, intravenous iron, erythropoietin, and red blood cell transfusion.
To assess the benefits and harms of the available treatment modalities for women with postpartum iron deficiency anaemia. These include intravenous iron, oral iron supplementation, red blood cell transfusion, and erythropoietin.
A Cochrane Information Specialist searched for all published, unpublished, and ongoing trials, without language or publication status restrictions. We searched databases including CENTRAL, MEDLINE, Embase, CINAHL, LILACS, WHO ICTRP, and ClinicalTrials.gov, together with reference checking, citation searching, and contact with study authors to identify eligible studies. We applied date limits to retrieve new records since the last search on 9 April 2015 until 11 April 2024.
We included published, unpublished, and ongoing randomised controlled trials (RCTs) that compared treatments for postpartum iron deficiency anaemia with placebo, no treatment, or alternative treatments. Cluster-randomised trials were eligible for inclusion. We included RCTs regardless of blinding. Participants were women with postpartum haemoglobin ≤ 12 g/dL, treated within six weeks after childbirth. We excluded non-randomised, quasi-randomised, and cross-over trials.
The critical outcomes of this review were maternal mortality and fatigue. The important outcomes included persistent anaemia symptoms, persistent postpartum anaemia, psychological well-being, infections, compliance with treatment, breastfeeding, length of hospital stay, serious adverse events, anaphylaxis or evidence of hypersensitivity, flushing/Fishbane reaction, injection discomfort/reaction, constipation, gastrointestinal pain, number of red blood cell transfusions, and haemoglobin levels.
We assessed risk of bias in the included studies using the Cochrane RoB 1 tool.
Two review authors independently performed study screening, risk of bias assessment, and data extraction. We contacted trial authors for supplementary data when necessary. We screened all trials for trustworthiness and scientific integrity using the Cochrane Trustworthiness Screening Tool. We conducted meta-analyses using a fixed-effect model whenever feasible to synthesise outcomes. In cases where data were not suitable for meta-analysis, we provided a narrative summary of important findings. We evaluated the overall certainty of the evidence using GRADE.
We included 33 RCTs with a total of 4558 postpartum women. Most trials were at high risk of bias for several risk of bias domains.
Most of the evidence was of low or very low certainty. Imprecision due to few events and risk of bias due to lack of blinding were the most important factors. Intravenous iron versus oral iron supplementation The evidence is very uncertain about the effect of intravenous iron on mortality (risk ratio (RR) 2.95, 95% confidence interval (CI) 0.12 to 71.96; P = 0.51; I² = not applicable; 3 RCTs; 1 event; 572 women; very low-certainty evidence). One woman died of cardiomyopathy, and another developed arrhythmia, both in the groups treated with intravenous iron. Intravenous iron probably results in a slight reduction in fatigue within 8 to 28 days (standardised mean difference -0.25, 95% CI -0.42 to -0.07; P = 0.006; I² = 47%; 2 RCTs; 515 women; moderate-certainty evidence). Breastfeeding was not reported. Oral iron probably increases the risk of constipation compared to intravenous iron (RR 0.12, 95% CI 0.06 to 0.21; P < 0.001; I² = 0%; 10 RCTs; 1798 women; moderate-certainty evidence). The evidence is very uncertain about the effect of intravenous iron on anaphylaxis or hypersensitivity (RR 2.77, 95% CI 0.31 to 24.86; P = 0.36; I² = 0%; 12 RCTs; 2195 women; very low-certainty evidence). Three women treated with intravenous iron experienced anaphylaxis or hypersensitivity. The trials that reported on haemoglobin at 8 to 28 days were too heterogeneous to pool. However, 5 of 6 RCTs favoured intravenous iron, with mean changes in haemoglobin ranging from 0.73 to 2.10 g/dL (low-certainty evidence). Red blood cell transfusion versus intravenous iron No women died in the only trial that reported on mortality (1 RCT; 7 women; very low-certainty evidence). The evidence is very uncertain about the effect of red blood cell transfusion on fatigue at 8 to 28 days (mean difference (MD) 1.20, 95% CI -2.41 to 4.81; P = 0.51; I² = not applicable; 1 RCT; 13 women; very low-certainty evidence) and breastfeeding more than six weeks postpartum (RR 0.43, 95% CI 0.12 to 1.57; P = 0.20; I² = not applicable; 1 RCT; 13 women; very low-certainty evidence). Constipation and anaphylaxis were not reported. Red blood cell transfusion may result in little to no difference in haemoglobin within 8 to 28 days (MD -1.00, 95% CI -2.02 to 0.02; P = 0.05; I² = not applicable; 1 RCT; 12 women; low-certainty evidence). Intravenous iron and oral iron supplementation versus oral iron supplementation Mortality and breastfeeding were not reported. One trial reported a greater improvement in fatigue in the intravenous and oral iron group, but the effect size could not be calculated (1 RCT; 128 women; very low-certainty evidence). Intravenous iron and oral iron may result in a reduction in constipation compared to oral iron alone (RR 0.21, 95% CI 0.07 to 0.69; P = 0.01; I² = not applicable; 1 RCT; 128 women; low-certainty evidence). There were no anaphylaxis or hypersensitivity events in the trials (2 RCTs; 168 women; very low-certainty evidence). Intravenous iron and oral iron may result in little to no difference in haemoglobin (g/dL) at 8 to 28 days (MD 0.00, 95% CI -0.48 to 0.48; P = 1.00; I² = not applicable; 1 RCT; 60 women; low-certainty evidence). Red blood cell transfusion versus no transfusion Mortality, fatigue at day 8 to 28, constipation, anaphylaxis, and haemoglobin were not reported. Red blood cell transfusion may result in little to no difference in breastfeeding more than six weeks postpartum (RR 0.91, 95% CI 0.78 to 1.07; P = 0.24; I² = not applicable; 1 RCT; 297 women; low-certainty evidence). Oral iron supplementation versus placebo or no treatment Mortality, fatigue, breastfeeding, constipation, anaphylaxis, and haemoglobin were not reported. Two trials reported on gastrointestinal symptoms, but did not report results by study arm.
Intravenous iron probably reduces fatigue slightly in the early postpartum weeks (8 to 28 days) compared to oral iron tablets, but probably results in little to no difference after four weeks. It is very uncertain if intravenous iron has an effect on mortality and anaphylaxis/hypersensitivity. Breastfeeding was not reported. Intravenous iron may increase haemoglobin slightly more than iron tablets, but the data were too heterogeneous to pool. However, changes in haemoglobin levels are a surrogate outcome, and treatment decisions should preferentially be based on patient-relevant outcomes. Iron tablets probably result in a large increase in constipation compared to intravenous iron. The effect of red blood cell transfusion compared to intravenous iron on mortality, fatigue, and breastfeeding is very uncertain. No studies reported on constipation or anaphylaxis/hypersensitivity. Red blood cell transfusion may result in little to no difference in haemoglobin at 8 to 28 days. The effect of intravenous iron and oral iron supplementation on mortality, fatigue, breastfeeding, and anaphylaxis/hypersensitivity is very uncertain or unreported. Intravenous iron and oral iron may result in a reduction in constipation compared to oral iron alone, and in little to no difference in haemoglobin. The effect of red blood cell transfusion compared to non-transfusion on mortality, fatigue, constipation, anaphylaxis/hypersensitivity, and haemoglobin is unreported. Red blood cell transfusion may result in little to no difference in breastfeeding. The effect of oral iron supplementation on mortality, fatigue, breastfeeding, constipation, anaphylaxis/hypersensitivity, and haemoglobin is unreported.
This Cochrane review had no dedicated funding.
Protocol and previous versions are available: Protocol (2013) [DOI: 10.1002/14651858.CD010861] Original review (2004) [DOI: 10.1002/14651858.CD004222.pub2] Review update (2015) [DOI: 10.1002/14651858.CD010861.pub2].
Jensen MCH
,Holm C
,Jørgensen KJ
,Schroll JB
... -
《Cochrane Database of Systematic Reviews》
-
Conservative, physical and surgical interventions for managing faecal incontinence and constipation in adults with central neurological diseases.
People with central neurological disease or injury have a much higher risk of both faecal incontinence (FI) and constipation than the general population. There is often a fine line between the two symptoms, with management intended to ameliorate one risking precipitating the other. Bowel problems are observed to be the cause of much anxiety and may reduce quality of life in these people. Current bowel management is largely empirical, with a limited research base. The review is relevant to individuals with any disease directly and chronically affecting the central nervous system (post-traumatic, degenerative, ischaemic or neoplastic), such as multiple sclerosis, spinal cord injury, cerebrovascular disease, Parkinson's disease and Alzheimer's disease. This is an update of a Cochrane Review first published in 2001 and subsequently updated in 2003, 2006 and 2014.
To assess the effects of conservative, physical and surgical interventions for managing FI and constipation in people with a neurological disease or injury affecting the central nervous system.
We searched the Cochrane Incontinence Specialised Register (searched 27 March 2023), which includes searches of the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, MEDLINE In-Process, MEDLINE Epub Ahead of Print, ClinicalTrials.gov, WHO ICTRP as well as handsearching of journals and conference proceedings; and all reference lists of relevant articles.
We included randomised, quasi-randomised (where allocation is not strictly random), cross-over and cluster-randomised trials evaluating any type of conservative, physical or surgical intervention against placebo, usual care or no intervention for the management of FI and constipation in people with central neurological disease or injury.
At least two review authors independently assessed the risk of bias in eligible trials using Cochrane's 'Risk of bias' tool and independently extracted data from the included trials using a range of prespecified outcome measures. We produced summary of findings tables for our main outcome measures and assessed the certainty of the evidence using GRADE.
We included 25 studies with 1598 participants. The studies were generally at high risk of bias due to lack of blinding of participants and personnel to the intervention. Half of the included studies were also at high risk of bias in terms of selective reporting. Outcomes were often reported heterogeneously across studies, making it difficult to pool data. We did not find enough evidence to be able to analyse the effects of interventions on individual central neurological diseases. Additionally, very few studies reported on the primary outcomes of self-reported improvement in FI or constipation, or Neurogenic Bowel Dysfunction Score. Conservative interventions compared with usual care, no active treatment or placebo Thirteen studies assessed this comparison. The interventions included assessment-based nursing, holistic nursing, probiotics, psyllium, faecal microbiota transplantation, and a stepwise protocol of increasingly invasive evacuation methods. Conservative interventions may result in a large improvement in faecal incontinence (standardised mean difference (SMD) -1.85, 95% confidence interval (CI) -3.47 to -0.23; 3 studies; n = 410; low-certainty evidence). We interpreted SMD ≥ 0.80 as a large effect. It was not possible to pool all data from studies that assessed improvement in constipation, but the evidence suggested that conservative interventions may improve constipation symptoms (data not pooled; 8 studies; n = 612; low-certainty evidence). Conservative interventions may lead to a reduction in mean time taken on bowel care (data not pooled; 5 studies; n = 526; low-certainty evidence). The evidence is uncertain about the effects of conservative interventions on condition-specific quality of life and adverse events. Neurogenic Bowel Dysfunction Score was not reported. Physical therapy compared with usual care, no active treatment or placebo Twelve studies assessed this comparison. The interventions included massage therapy, standing, osteopathic manipulative treatment, electrical stimulation, transanal irrigation, and conventional physical therapy with visceral mobilisation. Physical therapies may make little to no difference to self-reported faecal continence assessed using the St Mark's Faecal Incontinence Score, where the minimally important difference is five, or the Cleveland Constipation Score (MD -2.60, 95% CI -4.91 to -0.29; 3 studies; n = 155; low-certainty evidence). Physical therapies may result in a moderate improvement in constipation symptoms (SMD -0.62, 95% CI -1.10 to -0.14; 9 studies; n = 431; low-certainty evidence). We interpreted SMD ≥ 0.5 as a moderate effect. However, physical therapies may make little to no difference in Neurogenic Bowel Dysfunction Score as the minimally important difference for this tool is 3 (MD -1.94, 95% CI -3.36 to -0.51; 7 studies; n = 358; low-certainty evidence). We are very uncertain about the effects of physical therapies on the time spent on bowel care, condition-specific quality of life and adverse effects (all very low-certainty evidence). Surgical interventions compared with usual care, no active treatment or placebo No studies were found for surgical interventions that met the inclusion criteria for this review.
There remains little research on this common and, for patients, very significant issue of bowel management. The available evidence is almost uniformly of low methodological quality. The clinical significance of some of the research findings presented here is difficult to interpret, not least because each intervention has only been addressed in individual trials, against control rather than compared against each other, and the interventions are very different from each other. Understanding whether there is a clinically-meaningful difference from the results of available trials is largely hampered by the lack of uniform outcome measures. This is due to an absence of core outcome sets, and development of these needs to be a research priority to allow studies to be compared directly. Some studies used validated constipation, incontinence or condition-specific measures; however, others used unvalidated analogue scales to report effectiveness. Some studies did not use any patient-reported outcomes and focused on physiological outcome measures, which is of relatively limited significance in terms of clinical implementation. There was evidence in favour of some conservative interventions, but these findings need to be confirmed by larger, well-designed controlled trials, which should include evaluation of the acceptability of the intervention to patients and the effect on their quality of life.
Todd CL
,Johnson EE
,Stewart F
,Wallace SA
,Bryant A
,Woodward S
,Norton C
... -
《Cochrane Database of Systematic Reviews》
-
Educational and psychological interventions for managing atopic dermatitis (eczema).
Atopic dermatitis (eczema), can have a significant impact on well-being and quality of life for affected people and their families. Standard treatment is avoidance of triggers or irritants and regular application of emollients and topical steroids or calcineurin inhibitors. Thorough physical and psychological assessment is central to good-quality treatment. Overcoming barriers to provision of holistic treatment in dermatological practice is dependent on evaluation of the efficacy and economics of both psychological and educational interventions in this participant group. This review is based on a previous Cochrane review published in 2014, and now includes adults as well as children.
To assess the clinical outcomes of educational and psychological interventions in children and adults with atopic dermatitis (eczema) and to summarise the availability and principal findings of relevant economic evaluations.
We searched the Cochrane Skin Specialised Register, CENTRAL, MEDLINE, Embase, APA PsycINFO and two trials registers up to March 2023. We checked the reference lists of included studies and related systematic reviews for further references to relevant randomised controlled trials (RCTs) and contacted experts in the field to identify additional studies. We searched NHS Economic Evaluation Database, MEDLINE and Embase for economic evaluations on 8 June 2022.
Randomised, cluster-randomised and cross-over RCTs that assess educational and psychological interventions for treating eczema in children and adults.
We used standard Cochrane methods, with GRADE to assess the certainty of the evidence for each outcome. Primary outcomes were reduction in disease severity, as measured by clinical signs, patient-reported symptoms and improvement in health-related quality-of-life (HRQoL) measures. Secondary outcomes were improvement in long-term control of symptoms, improvement in psychological well-being, improvement in standard treatment concordance and adverse events. We assessed short- (up to 16 weeks after treatment) and long-term time points (more than 16 weeks).
We included 37 trials (6170 participants). Most trials were conducted in high-income countries (34/37), in outpatient settings (25/37). We judged three trials to be low risk of bias across all domains. Fifteen trials had a high risk of bias in at least one domain, mostly due to bias in measurement of the outcome. Trials assessed interventions compared to standard care. Individual educational interventions may reduce short-term clinical signs (measured by SCORing Atopic Dermatitis (SCORAD); mean difference (MD) -5.70, 95% confidence interval (CI) -9.39 to -2.01; 1 trial, 30 participants; low-certainty evidence) but patient-reported symptoms, HRQoL, long-term eczema control and psychological well-being were not reported. Group education interventions probably reduce clinical signs (SCORAD) both in the short term (MD -9.66, 95% CI -19.04 to -0.29; 3 studies, 731 participants; moderate-certainty evidence) and the long term (MD -7.22, 95% CI -11.01 to -3.43; 3 studies, 1424 participants; moderate-certainty evidence) and probably reduce long-term patient-reported symptoms (SMD -0.47 95% CI -0.60 to -0.33; 2 studies, 908 participants; moderate-certainty evidence). They may slightly improve short-term HRQoL (SMD -0.19, 95% CI -0.36 to -0.01; 4 studies, 746 participants; low-certainty evidence), but may make little or no difference to short-term psychological well-being (Perceived Stress Scale (PSS); MD -2.47, 95% CI -5.16 to 0.22; 1 study, 80 participants; low-certainty evidence). Long-term eczema control was not reported. We don't know whether technology-mediated educational interventions could improve short-term clinical signs (SCORAD; 1 study; 29 participants; very low-certainty evidence). They may have little or no effect on short-term patient-reported symptoms (Patient Oriented Eczema Measure (POEM); MD -0.76, 95% CI -1.84 to 0.33; 2 studies; 195 participants; low-certainty evidence) and probably have little or no effect on short-term HRQoL (MD 0, 95% CI -0.03 to 0.03; 2 studies, 430 participants; moderate-certainty evidence). Technology-mediated education interventions probably slightly improve long-term eczema control (Recap of atopic eczema (RECAP); MD -1.5, 95% CI -3.13 to 0.13; 1 study, 232 participants; moderate-certainty evidence), and may improve short-term psychological well-being (MD -1.78, 95% CI -2.13 to -1.43; 1 study, 24 participants; low-certainty evidence). Habit reversal treatment may reduce short-term clinical signs (SCORAD; MD -6.57, 95% CI -13.04 to -0.1; 1 study, 33 participants; low-certainty evidence) but we are uncertain about any effects on short-term HRQoL (Children's Dermatology Life Quality Index (CDLQI); 1 study, 30 participants; very low-certainty evidence). Patient-reported symptoms, long-term eczema control and psychological well-being were not reported. We are uncertain whether arousal reduction therapy interventions could improve short-term clinical signs (Eczema Area and Severity Index (EASI); 1 study, 24 participants; very low-certainty evidence) or patient-reported symptoms (visual analogue scale (VAS); 1 study, 18 participants; very low-certainty evidence). Arousal reduction therapy may improve short-term HRQoL (Dermatitis Family Impact (DFI); MD -2.1, 95% CI -4.41 to 0.21; 1 study, 91 participants; low-certainty evidence) and psychological well-being (PSS; MD -1.2, 95% CI -3.38 to 0.98; 1 study, 91 participants; low-certainty evidence). Long-term eczema control was not reported. No studies reported standard care compared with self-help psychological interventions, psychological therapies or printed education; or adverse events. We identified two health economic studies. One found that a 12-week, technology-mediated, educational-support programme may be cost neutral. The other found that a nurse practitioner group-education intervention may have lower costs than standard care provided by a dermatologist, with comparable effectiveness.
In-person, individual education, as an adjunct to conventional topical therapy, may reduce short-term eczema signs compared to standard care, but there is no information on eczema symptoms, quality of life or long-term outcomes. Group education probably reduces eczema signs and symptoms in the long term and may also improve quality of life in the short term. Favourable effects were also reported for technology-mediated education, habit reversal treatment and arousal reduction therapy. All favourable effects are of uncertain clinical significance, since they may not exceed the minimal clinically important difference (MCID) for the outcome measures used (MCID 8.7 points for SCORAD, 3.4 points for POEM). We found no trials of self-help psychological interventions, psychological therapies or printed education. Future trials should include more diverse populations, address shared priorities, evaluate long-term outcomes and ensure patients are involved in trial design.
Singleton H
,Hodder A
,Almilaji O
,Ersser SJ
,Heaslip V
,O'Meara S
,Boyers D
,Roberts A
,Scott H
,Van Onselen J
,Doney L
,Boyle RJ
,Thompson AR
... -
《Cochrane Database of Systematic Reviews》