Artificial Intelligence in Chronic Obstructive Pulmonary Disease: Research Status, Trends, and Future Directions --A Bibliometric Analysis from 2009 to 2023.

来自 PUBMED

作者:

Bian HZhu SZhang YFei QPeng XJin ZZhou TZhao H

展开

摘要:

A bibliometric analysis was conducted using VOSviewer and CiteSpace to examine studies published between 2009 and 2023 on the utilization of artificial intelligence (AI) in chronic obstructive pulmonary disease (COPD). On March 24, 2024, a computer search was conducted on the Web of Science (WOS) core collection dataset published between January 1, 2009, and December 30, 2023, to identify literature related to the application of artificial intelligence in chronic obstructive pulmonary disease (COPD). VOSviewer was utilized for visual analysis of countries, institutions, authors, co-cited authors, and keywords. CiteSpace was employed to analyze the intermediary centrality of institutions, references, keyword outbreaks, and co-cited literature. Relevant descriptive analysis tables were created using Excel2021 software. This study included a total of 646 papers from WOS. The number of papers remained small and stable from 2009 to 2017 but started increasing significantly annually since 2018. The United States had the highest number of publications among countries/regions while Silverman Edwin K and Harvard Medical School were the most prolific authors and institutions respectively. Lynch DA, Kirby M. and Vestbo J. were among the top three most cited authors overall. Scientific Reports had the largest number of publications while Radiology ranked as one of the top ten influential journals. The Genetic Epidemiology of COPD (COPDGene) Study Design was frequently cited. Through keyword clustering analysis, all keywords were categorized into four groups: epidemiological study of COPD; AI-assisted imaging diagnosis; AI-assisted diagnosis; and AI-assisted treatment and prognosis prediction in the COPD research field. Currently, hot research topics include explainable artificial intelligence framework, chest CT imaging, and lung radiomics. At present, AI is predominantly employed in genetic biology, early diagnosis, risk staging, efficacy evaluation, and prediction modeling of COPD. This study's results offer novel insights and directions for future research endeavors related to COPD.

收起

展开

DOI:

10.2147/COPD.S474402

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(191)

参考文献(36)

引证文献(0)

来源期刊

International Journal of Chronic Obstructive Pulmonary Disease

影响因子:2.89

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读