-
Global trends in coronary artery disease and artificial intelligence relevant studies: a bibliometric analysis.
Qi XT
,Wang H
,Zhu DG
,Zheng L
,Cheng X
,Zhang RJ
,Dong HL
... -
《-》
-
Research Trends in the Application of Artificial Intelligence in Oncology: A Bibliometric and Network Visualization Study.
The past decade has seen major advances in the use of artificial intelligence (AI) to solve various biomedical problems, including cancer. This has resulted in more than 6000 scientific papers focusing on AI in oncology alone. The expansiveness of this research area presents a challenge to those seeking to understand how it has developed. A scientific analysis of AI in the oncology literature is therefore crucial for understanding its overall structure and development. This may be addressed through bibliometric analysis, which employs computational and visual tools to identify research activity, relationships, and expertise within large collections of bibliographic data. There is already a large volume of research data regarding the development of AI applications in cancer research. However, there is no published bibliometric analysis of this topic that offers comprehensive insights into publication growth, co-citation networks, research collaboration, and keyword co-occurrence analysis for technological trends involving AI across the entire spectrum of oncology research. The purpose of this study is to investigate documents published during the last decade using bibliometric indicators and network visualization. This will provide a detailed assessment of global research activities, key themes, and AI trends over the entire breadth of the oncology field. It will also specifically highlight top-performing authors, organizations, and nations that have made major contributions to this research domain, as well as their interactions via network collaboration maps and betweenness centrality metric. This study represents the first global investigation of AI covering the entire cancer field and using several validated bibliometric techniques. It should provide valuable reference material for reorienting this field and for identifying research trajectories, topics, major publications, and influential entities including scholars, institutions, and countries. It will also identify international collaborations at three levels: micro (that of an individual researcher), meso (that of an institution), and macro (that of a country), in order to inform future lines of research.
The Science Citation Index Expanded from the Web of Science Core Collection was searched for articles and reviews pertaining exclusively to AI in cancer from 2012 through 2022. Annual publication trends were plotted using Microsoft Excel 2019. CiteSpace and VOSViewer were used to investigate the most productive countries, researchers, journals, as well as the sharing of resources, intellectual property, and knowledge base in this field, along with the co-citation analysis of references and keywords.
A total of 6757 documents were retrieved. China produced the most publications of any country (2087, 30.89%), and Sun Yat Sen University the highest number (167, 2.47%) of any institute. WEI WANG was the most prolific author (33, 0.49%). RUI ZHANG ranked first for highest betweenness centrality (0.21) and collaboration criteria. Scientific Reports was found to be the most prolific journal (208, 3.18%), while PloS one had the most co-citations (2121, 1.55%). Strong and ongoing citation bursts were found for keywords such as "tissue microarray", "tissue segmentation", and "artificial neural network".
Deep learning currently represents one of the most cutting-edge and applicable branches of AI in oncology. The literature to date has dealt extensively with radiomics, genomics, pathology, risk stratification, lesion detection, and therapy response. Current hot topics identified by our analysis highlight the potential application of AI in radiomics and precision oncology.
Wu T
,Duan Y
,Zhang T
,Tian W
,Liu H
,Deng Y
... -
《-》
-
Artificial Intelligence in Chronic Obstructive Pulmonary Disease: Research Status, Trends, and Future Directions --A Bibliometric Analysis from 2009 to 2023.
A bibliometric analysis was conducted using VOSviewer and CiteSpace to examine studies published between 2009 and 2023 on the utilization of artificial intelligence (AI) in chronic obstructive pulmonary disease (COPD).
On March 24, 2024, a computer search was conducted on the Web of Science (WOS) core collection dataset published between January 1, 2009, and December 30, 2023, to identify literature related to the application of artificial intelligence in chronic obstructive pulmonary disease (COPD). VOSviewer was utilized for visual analysis of countries, institutions, authors, co-cited authors, and keywords. CiteSpace was employed to analyze the intermediary centrality of institutions, references, keyword outbreaks, and co-cited literature. Relevant descriptive analysis tables were created using Excel2021 software.
This study included a total of 646 papers from WOS. The number of papers remained small and stable from 2009 to 2017 but started increasing significantly annually since 2018. The United States had the highest number of publications among countries/regions while Silverman Edwin K and Harvard Medical School were the most prolific authors and institutions respectively. Lynch DA, Kirby M. and Vestbo J. were among the top three most cited authors overall. Scientific Reports had the largest number of publications while Radiology ranked as one of the top ten influential journals. The Genetic Epidemiology of COPD (COPDGene) Study Design was frequently cited. Through keyword clustering analysis, all keywords were categorized into four groups: epidemiological study of COPD; AI-assisted imaging diagnosis; AI-assisted diagnosis; and AI-assisted treatment and prognosis prediction in the COPD research field. Currently, hot research topics include explainable artificial intelligence framework, chest CT imaging, and lung radiomics.
At present, AI is predominantly employed in genetic biology, early diagnosis, risk staging, efficacy evaluation, and prediction modeling of COPD. This study's results offer novel insights and directions for future research endeavors related to COPD.
Bian H
,Zhu S
,Zhang Y
,Fei Q
,Peng X
,Jin Z
,Zhou T
,Zhao H
... -
《International Journal of Chronic Obstructive Pulmonary Disease》
-
Landscape of Artificial Intelligence in Breast Cancer (2000-2021): A Bibliometric Analysis.
Breast cancer remains one of the leading malignancies in women with distinct clinical heterogeneity and intense multidisciplinary cooperation. Remarkable progresses have been made in artificial intelligence (AI). A bibliometric analysis was taken to characterize the current picture of development of AI in breast cancer.
Search process was performed in the Web of Science Core Collection database with analysis and visualization performed by R software, VOSviewer, CiteSpace and Gephi. Latent Dirichlet Allocation (LDA), a machine learning based algorithm, was used for analysis of topic terms.
A total of 511 publications in the field of AI in breast cancer were retrieved between 2000 to 2021. A total of 103 publications were from USA with 2482 citations, making USA the leading country in the field of AI in breast cancer, followed by China. Mem Sloan Kettering Canc Ctr, Radboud Univ Nijmegen, Peking Univ, Sichuan Univ, ScreenPoint Med BV, Lund Univ, Duke Univ, Univ Chicago, Harvard Med Sch and Univ Texas MD Anderson Canc Ctr were the leading institutions in the field of AI in breast cancer. AI, breast cancer and classification, mammography were the leading keywords. LDA topic modeling identified top fifty topics relating the AI in breast cancer. A total of five primary clusters were found within the network of fifty topics, including radiology feature, lymph node diagnosis and model, pathological tissue and image, dataset classification and machine learning, gene expression and survival.
This research depicted AI studies in breast cancer and presented insightful topic terms with future perspective.
Zhang Y
,Yu C
,Zhao F
,Xu H
,Zhu C
,Li Y
... -
《-》
-
Application of artificial intelligence in rheumatic disease: a bibliometric analysis.
The utilization of artificial intelligence (AI) in rheumatic diseases has enhanced the diagnostic accuracy of rheumatic diseases, enabled the prediction of patient outcomes, expanded treatment options, and facilitated the provision of individualized medical solutions. The research in this field has been progressively growing in recent years. Consequently, there is a need for bibliometric analysis to elucidate the current state of advancement and predominant research foci in AI applications within rheumatic diseases. Additionally, it is crucial to identify key contributors and their interrelations in this field. This study aimed to conduct a bibliometric analysis to investigate the current research hotspots and collaborative networks in the application of AI in rheumatic disease in recent years. A comprehensive search was conducted in Web of Science for articles on artificial intelligence in rheumatic diseases, published in SSCI and SCI-EXPANDED until January 1, 2024. Utilizing software tools like VOSviewers and CiteSpace, we analyzed various parameters including publication year, journal, country, institution, and authorship. This analysis extended to examining cited authors, generating reference and citation network graphs, and creating co-citation network and keyword maps. Additionally, research hotspots and trends in this domain were evaluated. As of January 1, 2024, a total of 3508 articles have been published on the application of artificial intelligence (AI) in rheumatic disease, exhibiting a steady rise in both the annual publication frequency and rate. "Scientific Reports" emerged as the leading journal in terms of relevant publications. The United States stood out as the predominant country in terms of the volume of published papers, with the University of California, San Francisco (UCSF) being the most prolific and frequently cited institution. Among authors, Young Ho Lee and Valentina Pedoia were noted for their significant contributions, with Pedoia achieving the highest average citation count per publication. Machine learning emerged as a prominent and central keyword. The trend indicates a growing interest in AI research within rheumatologic diseases, with its role expected to become increasingly pivotal in the field. This study presents a comprehensive summary of research trends and developments in the application of artificial intelligence (AI) in rheumatic diseases. It offers insights into potential collaborations and prospects for future research, clarifying the research frontiers and emerging directions in recent years. The findings of this study serve as a valuable reference for scholars studying rheumatology and immunology.
Zhao J
,Li L
,Li J
,Zhang L
... -
《-》