Integrating serum pharmacochemistry, network pharmacology and untargeted metabolomics strategies to reveal the material basis and mechanism of action of Feining keli in the treatment of chronic bronchitis.

来自 PUBMED

作者:

Zhu ZFeng YDZou YLXiao YHWu JJYang YRJiang XXWang LXu W

展开

摘要:

Feining keli (FNKL) is herbal preparation mainly made from Senecio cannabifolius Less., In recent years, more and more studies have found that FNKL has excellent therapeutic effects on chronic bronchitis (CB). Nevertheless, its pharmacodynamic material basis and mechanism of action are still unknown. This study aimed to explore the pharmacodynamic material basis and mechanism of action of FNKL in treating CB. The CB rat model was induced using nasal drops of lipopolysaccharide (LPS) in combination with smoking. Various assessments including behavioral and body mass examination, lung index measurement, enzyme linked immunosorbent assay (ELISA), as well as histological analyses using hematoxylin and eosin (H&E) and Masson staining were conducted to validate the reliability of the CB model. The serum components of FNKL in CB rats were identified using ultra-high-performance liquid chromatography Orbitrap Exploris mass spectrometer (UHPLC-OE-MS). Network pharmacology was used to predict the network of action of the active ingredients in FNKL based on these serum components. Signaling pathways were enriched and analyzed, and molecular docking was conducted for key targets. Molecular dynamics simulations were performed using GROMACS software. The mechanism was confirmed through a series of experiments including Western blot (WB), immunofluorescence (IF), and reverse transcription (RT)-PCR. Additionally, untargeted metabolomics was employed to identify biomarkers and relevant metabolic pathways associated with the treatment of CB with FNKL. In CB rats, FNKL improved body mass, lung index, and pathological damage of lung tissues. It also decreased interleukin (IL)-6, tumor necrosis factor-alpha (TNF-α), malonaldehyde (MDA) levels, and percentage of lung collagen fiber area. Furthermore, FNKL increased IL-10 and superoxide dismutase (SOD) levels, which helped alleviate bronchial inflammation in the lungs. A total of 70 FNKL chemical components were identified in CB rat serum. Through network pharmacology analysis, 5 targets, such as PI3K, AKT, NF-κB, HIF-1α, and MYD88, were identified as key targets of FNKL in the treatment of CB. Additionally, the key signaling pathways identified were PI3K/AKT pathway、NF-κB/MyD88 pathway、HIF-1α pathway. WB, IF, and RT-PCR experiments were conducted to confirm the findings. Molecular docking studies demonstrated successful docking of 16 potential active components with 5 key targets. Additionally, molecular dynamics simulations indicated the stability of quercetin-3-galactoside and HIF-1α. Metabolomics analysis revealed that FNKL primarily regulated pathways related to alpha-linolenic acid metabolism, primary bile acid biosynthesis, bile secretion, arachidonic acid metabolism, neuroactive ligand-receptor interaction, and folate biosynthesis. Furthermore, the expression levels of traumatic acid, traumatin, alpha linolenic acid, cholic acid, 2-arachidonoylglycerol, deoxycholic acid, 7,8-dihydroneopterin, and other metabolites were found to be regulated. FNKL exhibits positive therapeutic effects on CB, with quercetin-3-galactoside identified as a key active component. The mechanism of FNKL's therapeutic action on CB involves reducing inflammatory response, oxidative stress, and regulating metabolism, and its molecular mechanism was better elucidated in a holistic manner. This study serves as a reference for understanding the pharmacodynamic material basis and mechanism of action of FNKL in treating CB, and provides avenues for exploring the effects of compounded herbal medicines on CB.

收起

展开

DOI:

10.1016/j.jep.2024.118643

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(233)

参考文献(0)

引证文献(0)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读