Metabolomics and serum pharmacochemistry combined with network pharmacology uncover the potential effective ingredients and mechanisms of Yin-Chen-Si-Ni Decoction treating ANIT-induced cholestatic liver injury.

来自 PUBMED

作者:

Liu YChen HYang GFeng F

展开

摘要:

Yin-Chen-Si-Ni Decoction is a classical traditional Chinese medicine (TCM) prescription that is used clinically for treating cholestatic liver injury (CLI) and other hepatic diseases. However, the material basis and underlying mechanisms of YCSND are not clear. To investigate effective components and mechanisms of YCSND in the treatment of CLI using serum pharmacochemistry, metabolomics, and network pharmacology. Biochemical indicators, liver index, and histopathology analysis were adopted to evaluate the protective effect of YCSND on ANIT-induced CLI rats. Then, a UPLC-Q-Exactive Orbitrap MS/MS analysis of the migrant components in serum and liver including prototype and metabolic components was performed in YCSND. In addition, a study of the endogenous metabolites using serum and liver metabolomics was performed to discover potential biomarkers, metabolic pathways, and associated mechanisms. Further, the network pharmacology oriented by in vivo migrant components was also used to pinpoint the active ingredients, core targets, and signaling pathways of YCSND. Finally, molecular docking and molecular dynamics simulation (MDS) were used to predict the binding ability between components and core targets, and a real-time qPCR (RT-qPCR) experiment was used to measure the mRNA expression of the core target genes. Pharmacodynamic studies suggest that YCSND could exert obvious hepatoprotective effects on CLI rats. Furthermore, 68 compounds, comprising 32 prototype components and 36 metabolic components from YCSND, were found by serum pharmacochemistry analysis. Network pharmacology combining molecular docking and MDS showed that apigenin, naringenin, 18β-glycyrrhetinic acid, and isoformononetin have better binding ability to 6 core targets (EGFR, AKT1, IL6, MMP9, CASP3, PPARG). Additionally, PI3K, TNF-α, MAPK3, and six core target genes in liver tissues were validated with RT-qPCR. Metabolomics revealed the anti-CLI effects of YCSND by regulating four metabolic pathways of primary bile acid and biosynthesis, phenylalanine, tyrosine and tryptophan biosynthesis, taurine and hypotaurine metabolism, and arachidonic acid metabolism. Integrating metabolomics and network pharmacology identified four pathways related to CLI, including the PI3K-Akt, HIF-1, MAPK, and TNF signaling pathway, which revealed multiple mechanisms of YCSND against CLI that might involve anti-inflammatory and apoptosis. The research based on serum pharmacochemistry, network pharmacology, and metabolomics demonstrates the beneficial hepatoprotective effects of YCSND on CLI rats by regulating multiple components, multiple targets, and multiple pathways, and provides a potent means of illuminating the material basis and mechanisms of TCM prescriptions.

收起

展开

DOI:

10.1016/j.jep.2024.118713

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(216)

参考文献(0)

引证文献(0)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读