Zhisou powder displays therapeutic effect on chronic bronchitis through inhibiting PI3K/Akt/HIF-1α/VEGFA signaling pathway and reprograming metabolic pathway of arachidonic acid.

来自 PUBMED

作者:

Dong YLiu YTang JDu JZhuang XTan SYang YYin D

展开

摘要:

Zhisou Powder (ZP), one of the most common prescriptions in traditional Chinese medicine, has been widely used in the treatment of acute or chronic bronchitis and chronic cough. The ZP was composed of Ziwan (Aster tataricus L. f.), Jiegeng (Platycodon grandiflorus (Jacq.) A. DC.), Jingjie (Nepeta cataria L.), Baibu (Stemona sessilifolia (Miq.) Miq.), Baiqian (Vincetoxicum glaucescens (Decne.) C. Y. Wu & D. Z. Li), Chenpi (Citrus × aurantium f. deliciosa (Ten.) M. Hiroe) and Gancao (Glycyrrhiza uralensis Fisch. ex DC.), with plant names among it checked with MPNS (http://mpns.kew.org). But until now, the key active components and targets of ZP, and related mechanism of ZP in the treatment of chronic bronchitis (CB) remain unclear. This study combined UPLC-Q-Exactive-Orbitrap-MS, network pharmacology, metabonomics with experiment verification to explore potential mechanism of ZP in the treatment of CB. UPLC-Q-Exactive-Orbitrap-MS was performed to analyze the chemical components of ZP. The potentially effective components, attractive targets and critical signaling pathways of Zhisou Powder in the treatment of CB were screened by UPLC-Q-Exactive-Orbitrap-MS combined with network pharmacology. Additionally, the CB model rats induced by SO2 were used to evaluate the anti-chronic bronchitis activity of ZP in vivo. The pulmonary pathology was determined by hematoxylin-eosin staining. Meanwhile, PI3K/Akt/HIF-1α/VEGFA signaling pathway predicted from network pharmacology was verified by Western blot and RT-PCR. Lastly, the metabolic changes of arachidonic acid (AA) in ZP-treated rats were quantitatively analyzed by LC-MS targeted metabonomics, and the proteins expression involved in AA metabolic pathway were detected by immunohistochemistry, immunofluorescence and Western blot. The main active components of ZP in the treatment of CB selected by network pharmacology and UPLC-Q-Exactive-Orbitrap-MS technology were quercetin, kaempferol, luteolin, galangin, isorhamnetin, naringenin, nobiletin, formononetin and so on. The core targets of these components were predicted to be TP53, TNF, IL-6, VEGFA, CASP3, IL-1β, JUN, PTGS2. Enrichment of KEGG pathway analysis found that PI3K/Akt/HIF-1α/VEGFA signaling pathway might play a key role in the treatment of CB with ZP. The in vivo study showed that ZP significantly improved the pathological changes of SO2-treated lung tissue and inhibited the activation of PI3K/Akt/HIF-1α/VEGFA signaling pathway. The changes of AA and its metabolites in vivo were studied by targeted metabonomics, and it showed that ZP could reprogram the disorder of AA metabolism which contributed to the treatment of CB with ZP. ZP displayed good therapeutic effect on CB model rats through inhibiting PI3K/Akt/HIF-1α/VEGFA signaling pathway to exhibit anti-inflammatory effect and reprogramming disordered metabolic pathway of arachidonic acid.

收起

展开

DOI:

10.1016/j.jep.2023.117110

被引量:

3

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(425)

参考文献(0)

引证文献(3)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读