Semantic contrast with uncertainty-aware pseudo label for lumbar semi-supervised classification.

来自 PUBMED

作者:

Hai JChen JQiao KLiang NSu ZLv HYan B

展开

摘要:

Lumbar disc herniation (LDH) is a prevalent spinal disease that can result in severe pain, with Magnetic resonance imaging (MRI) serving as a commonly diagnostic tool. However, annotating numerous MRI images, necessary for deep learning based LDH diagnosis, can be challenging and labor-intensive. Semi-supervised learning, mainly utilizing pseudo labeling and consistency regularization, can leverage limited labeled images and abundant unlabeled images. However, consistency regularization solely focuses on maintaining the semantic consistency of transformed unlabeled data but fails to utilize the semantic information from labeled data to guide the unlabeled data, and additionally, pseudo labeling is prone to confirmation bias. We propose SeCoFixMatch, an innovative approach that seamlessly integrates semantic contrast and uncertainty-aware pseudo labeling into semi-supervised learning. Semantic contrast constraints the semantic consistency between labeled and unlabeled images. Pseudo labels are generated by combining predictive confidence and uncertainty, with uncertainty computing by optimizing the Kullback-Leibler (KL) loss between predictive and target Dirichlet distribution. Comparison with other semi-supervised models and ablation experiment with varying labeled data demonstrate the effectiveness and generalization of proposed model. Notably, SeCoFixMatch, trained with just 40 labels, outperforms the baseline model trained with 200 labels, reducing the annotation effort by a remarkable 80%. Proposed pseudo labeling algorithm generates more precise pseudo labels for semantic contrastive learning and semantic contrastive learning facilitates better feature representation, thereby further improving the prediction accuracy of pseudo label. The mutual reinforcement of pseudo labeling and semantic contrast constraints boosts the performance of semi-supervised algorithm.

收起

展开

DOI:

10.1016/j.compbiomed.2024.108754

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(224)

参考文献(0)

引证文献(0)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读