URCA: Uncertainty-based region clipping algorithm for semi-supervised medical image segmentation.

来自 PUBMED

作者:

Qin CWang YZhang J

展开

摘要:

Training convolutional neural networks based on large amount of labeled data has made great progress in the field of image segmentation. However, in medical image segmentation tasks, annotating the data is expensive and time-consuming because pixel-level annotation requires experts in the relevant field. Currently, the combination of consistent regularization and pseudo labeling-based semi-supervised methods has shown good performance in image segmentation. However, in the training process, a portion of low-confidence pseudo labels are generated by the model. And the semi-supervised segmentation method still has the problem of distribution bias between labeled and unlabeled data. The objective of this study is to address the challenges of semi-supervised learning and improve the segmentation accuracy of semi-supervised models on medical images. To address these issues, we propose an Uncertainty-based Region Clipping Algorithm for semi-supervised medical image segmentation, which consists of two main modules. A module is introduced to compute the uncertainty of two sub-networks predictions with diversity using Monte Carlo Dropout, allowing the model to gradually learn from more reliable targets. To retain model diversity, we use different loss functions for different branches and use Non-Maximum Suppression in one of the branches. The other module is proposed to generate new samples by masking the low-confidence pixels in the original image based on uncertainty information. New samples are fed into the model to facilitate the model to generate pseudo labels with high confidence and enlarge the training data distribution. Comprehensive experiments on the combination of two benchmarks ACDC and BraTS2019 show that our proposed model outperforms state-of-the-art methods in terms of Dice, HD95 and ASD. The results reach an average Dice score of 87.86 % and a HD95 score of 4.214 mm on ACDC dataset. For the brain tumor segmentation, the results reach an average Dice score of 84.79 % and a HD score of 10.13 mm. Our proposed method improves the accuracy of semi-supervised medical image segmentation. Extensive experiments on two public medical image datasets including 2D and 3D modalities demonstrate the superiority of our model. The code is available at: https://github.com/QuintinDong/URCA.

收起

展开

DOI:

10.1016/j.cmpb.2024.108278

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(454)

参考文献(0)

引证文献(0)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读