CPSS: Fusing consistency regularization and pseudo-labeling techniques for semi-supervised deep cardiovascular disease detection using all unlabeled electrocardiograms.

来自 PUBMED

作者:

Shi JLiu WZhang HChang SWang HHe JHuang Q

展开

摘要:

Deep learning usually achieves good performance in the supervised way, which requires a large amount of labeled data. However, manual labeling of electrocardiograms (ECGs) is laborious that requires much medical knowledge. Semi-supervised learning (SSL) provides an effective way of leveraging unlabeled data to improve model performance, providing insight for solving this problem. The objective of this study is to improve the performance of cardiovascular disease (CVD) detection by fully utilizing unlabeled ECG. A novel SSL algorithm fusing consistency regularization and pseudo-labeling techniques (CPSS) is proposed. CPSS consists of supervised learning and unsupervised learning. For supervised learning, the labeled ECGs are mapped into prediction vectors by the classifier. The cross-entropy loss function is used to optimize the classifier. For unsupervised learning, the unlabeled ECGs are weakly and strongly augmented, and a consistency loss is used to minimize the difference between the classifier's predictions for the two augmentations. Pseudo-labeling techniques include positive pseudo-labeling (PL) and ranking-based negative pseudo-labeling (RNL). PL introduces pseudo-labels for data with high prediction confidence. RNL assigns negative pseudo-labels to the lower-ranked categories in the prediction vectors to leverage data with low prediction confidence. In this study, VGGNet and ResNet are used as classifiers, which are jointly optimized by labeled and unlabeled ECGs. CPSS has been validated on several databases. With the same number of labeled ECGs (10%), it improves the accuracies over pure supervised learning by 13.59%, 4.60%, and 5.38% in the CPSC2018, PTB-XL, and Chapman databases, respectively. CPSS achieves comparable results to the fully supervised method with only 10% of labeled ECGs, which reduces the labeling workload by 90%. In addition, to verify the practicality of CPSS, a cardiovascular disease monitoring system is designed by heterogeneously deploying the trained classifiers on an SoC (system-on-a-chip), which can detect CVD in real time. The results of this study indicate that the proposed CPSS can significantly improve the performance of CVD detection using unlabeled ECG, which reduces the burden of ECG labeling in deep learning. In addition, the designed monitoring system makes the proposed CPSS promising for real-world applications.

收起

展开

DOI:

10.1016/j.cmpb.2024.108315

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(207)

参考文献(0)

引证文献(0)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读