Polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs) in human breast milk from Colombia: A probabilistic risk assessment approach.
Polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), and organochlorine pesticides (OCPs) are ubiquitous environmental contaminants. They were produced in relatively large volumes in the last century and are now subject to long-term monitoring and regulated under the United Nations Stockholm Convention (SC) on persistent organic pollutants (POPs). Though restricted, human exposure is still a concern and in some regions of the globe the information on the health risk is limited. Sixty breast milk samples from nursing mothers were collected between 2014 and 2015, residing in Bogota, Cartagena, and Medellin, which are industrialized cities in Colombia. This is the first comprehensive study to determine the concentrations in breast milk of PBDEs (n = 7), PCBs (n = 29), and OCPs (n = 28) in Colombia. The detection frequency of POPs, including BDE-47, CB-138, CB-153, CB-156, and CB-180, as well as several OCPs such as chloroneb, aldrins, HCHs, DDTs, and heptachlor, was found to be 100% in all samples tested. The mean concentrations of the analyzed legacy POPs were ∑3DDTs (423 ng/g lw) > chloroneb (50.1 ng/g lw) > ∑2permetrins (17.5 ng/g lw) > ∑2aldrins (16.7 ng/g lw) > 29 PCBs (15.04 ng/g lw) > ∑2chlordanes (CHLs) (11.2 ng/g lw) ≈ ∑3endosulfans (11.1 ng/g lw) > ∑2heptachlors (2.43 ng/g lw) > 7PBDEs (2.1 ng/g lw) > ∑4HCHs (0.58 ng/g lw). The results of this study suggest that the concentrations of DDTs were present in breast milk samples from Colombia at levels comparable to those found in previous studies conducted in other countries such as Brazil, Uruguay, Chile, and various Asian countries. The concentrations of PBDE and PCB congeners, as well as many pesticides, were found to be significantly correlated with each other. This suggests that these substances may have similar sources of exposure. The strength of the pair correlation among concentrations of POPs was assessed using Spearman's correlation coefficients, which varied from r = 0.62 for the association between BDE-47 and CB-153, to a high correlation of 0.99 for the correlation between γ-Chlordane and heptachlor. This suggests that these POPs may share similar sources, such as diet. An exposure assessment model obtained by Monte Carlo simulation showed that infants were exposed to low concentrations of POPs with exception of p,p'-DDE and Aldrin, in which 25th, 50th and 95th percentiles were greater than the threshold reference values of non-carcinogenic effects suggested by US-EPA regulations while the 90th percentile of pg TEQ/Kg-bw/day for dl-PCBs was above of the tolerable daily intake (TDI) proposed by the World Health Organization (WHO). Therefore, the health risk of infants exposed to OCPs and dl-PCBs should be exanimated continually through biomonitoring programs in the Colombian population.
Torres-Moreno AC
,Mejia-Grau K
,Puente-DelaCruz L
,Codling G
,Villa AL
,Ríos-Marquez O
,Patequiva-Chauta L
,Cobo M
,Johnson-Restrepo B
... -
《-》
Levels and profiles of organochlorines and flame retardants in car and house dust from Kuwait and Pakistan: implication for human exposure via dust ingestion.
There are only few studies documenting indoor pollution in the Middle East and the Indian subcontinent. In present study, we have evaluated the occurrence of various organochlorines (OCs) and flame retardants (FRs) in dust from cars and houses of Pakistan and Kuwait. Polybrominated diphenyl ethers (PBDEs), novel brominated flame retardants (NBFRs), organophosphate FRs (PFRs), polychlorinated biphenyls (PCBs), and organochlorine pesticides (OCPs) were investigated in indoor dust from urban houses (N=15 per country) and cars (N=15 per country). PFRs were the major analytes in all four microenvironments, followed by PBDEs>NBFRs>OCPs>PCBs. For all classes of analytes, relatively lower levels were observed in car and house dust from Pakistan than Kuwait. Levels of ∑PBDEs, ∑NBFRs and ∑PFRs were higher in car dust, while ∑OCPs and ∑PCBs were higher in house dust from both countries. ∑PFRs occurred at average concentrations of 16,900, 87,900, 475, and 2500ng/g in Kuwaiti house and car, and Pakistani house and car dust, respectively. For both countries, the profiles of analytes in car dust were different from those in the house dust. Different exposure scenarios using 5th percentile, median, mean, and 95th percentile levels were estimated for adult, taxi drivers and toddlers. For Kuwaiti toddlers, assuming high dust intake and mean and 95th percentile concentrations, the values computed for ∑OCPs (1500ng/kg bw/day) were higher than RfD values, while for ∑PCBs (14.5ng/kg bw/day) it was only two-fold lower than the corresponding RfDs.
Ali N
,Ali L
,Mehdi T
,Dirtu AC
,Al-Shammari F
,Neels H
,Covaci A
... -
《-》
Spatial distribution and hazard of halogenated flame retardants and polychlorinated biphenyls to common kingfisher (Alcedo atthis) from a region of South China affected by electronic waste recycling.
Numerous studies have reported bioaccumulation of halogenated flame retardants (HFRs) and polychlorinated biphenyls (PCBs) in wildlife from electronic waste (e-waste) recycling sites. However, the concentrations and hazards of HFRs and PCBs in wildlife from non-e-waste sites which were not involved in any known e-waste recycling activities in the e-waste-impacted region are still unclear. Polybrominated diphenyl ethers (PBDEs), alternative HFRs (AHFRs; including dechlorane plus, decabromodiphenyl ethane, and 1,2-bis(2,4,6-tribromophenoxy) ethane), and PCBs were quantified in common kingfishers (Alcedo atthis) from a region affected by e-waste recycling in South China, and potential adverse effects were evaluated. Concentrations of ∑PBDEs and ∑PCBs in kingfishers ranged from 2.1 × 103-1.3 × 105 ng/g lipid mass (lm) and 2.1 × 103-1.5 × 106 ng/g lm, respectively. At e-waste recycling sites, these concentrations were 100- to 1000-fold greater than those in kingfishers from non-e-waste areas, where concentrations of ∑PBDEs and ∑PCBs were 16-1.2 × 103 and 39-3.0 × 103 ng/g lm, respectively. Concentrations of ∑AHFRs in kingfishers from e-waste sites and non-e-waste sites ranged from 8.5 to 3.6 × 102 and 0.8-2.9 × 102 ng/g lm, respectively. The greatest concentrations of PCBs in kingfishers were measured from the e-waste sites. Additionally, kingfishers from four non-e-waste sites in the vicinity of e-waste sites had greater PCB concentrations compared to the other six non-e-waste sites. Concentrations of AHFRs were negatively and significantly correlated with distance from an e-waste site, which indicated that AHFRs from non-e-waste sites might be influenced by point sources. Further, a significant (r2 = 0.53, p = 0.02) positive correlation between human population density and concentrations of ∑PBDEs in kingfishers from non-e-waste sites was observed. Concentrations of either PBDEs or PCBs from e-waste sites might pose severe, adverse reproductive effects to kingfishers, while the potential for adverse effects of PBDEs and PCBs to kingfishers from most non-e-waste sites seemed minimal.
Peng Y
,Wu J
,Luo X
,Zhang X
,Giesy JP
,Mai B
... -
《-》