Levels and profiles of organochlorines and flame retardants in car and house dust from Kuwait and Pakistan: implication for human exposure via dust ingestion.
There are only few studies documenting indoor pollution in the Middle East and the Indian subcontinent. In present study, we have evaluated the occurrence of various organochlorines (OCs) and flame retardants (FRs) in dust from cars and houses of Pakistan and Kuwait. Polybrominated diphenyl ethers (PBDEs), novel brominated flame retardants (NBFRs), organophosphate FRs (PFRs), polychlorinated biphenyls (PCBs), and organochlorine pesticides (OCPs) were investigated in indoor dust from urban houses (N=15 per country) and cars (N=15 per country). PFRs were the major analytes in all four microenvironments, followed by PBDEs>NBFRs>OCPs>PCBs. For all classes of analytes, relatively lower levels were observed in car and house dust from Pakistan than Kuwait. Levels of ∑PBDEs, ∑NBFRs and ∑PFRs were higher in car dust, while ∑OCPs and ∑PCBs were higher in house dust from both countries. ∑PFRs occurred at average concentrations of 16,900, 87,900, 475, and 2500ng/g in Kuwaiti house and car, and Pakistani house and car dust, respectively. For both countries, the profiles of analytes in car dust were different from those in the house dust. Different exposure scenarios using 5th percentile, median, mean, and 95th percentile levels were estimated for adult, taxi drivers and toddlers. For Kuwaiti toddlers, assuming high dust intake and mean and 95th percentile concentrations, the values computed for ∑OCPs (1500ng/kg bw/day) were higher than RfD values, while for ∑PCBs (14.5ng/kg bw/day) it was only two-fold lower than the corresponding RfDs.
Ali N
,Ali L
,Mehdi T
,Dirtu AC
,Al-Shammari F
,Neels H
,Covaci A
... -
《-》
Assessment of human exposure to indoor organic contaminants via dust ingestion in Pakistan.
Ingestion of indoor dust has been acknowledged as an important route of exposure to organic contaminants (OCs). We investigated the presence of polybrominated diphenyl ethers (PBDEs), novel brominated flame retardants (NBFRs), organophosphate flame retardants (OPFRs), polychlorinated biphenyls (PCBs), and organochlorine pesticides (OCPs) in indoor floor dust from rural homes (N=31) and mosques (N=12) in Gujrat, Pakistan. Low concentrations were observed for most contaminants. OPFRs were the principle contaminants, with tri-(2-butoxyethyl)-phosphate (TBEP) and tri-phenyl-phosphate (TPP) having medians of 66 and 109 ng/g, respectively. PBDEs were only minor constituents in the investigated samples, with BDE 209 (median 40 ng/g) being the most important congener. Levels and profile of ∑PBDEs, ∑NBFRs, ∑HCHs, ∑DDTs, and ∑PCBs revealed no difference (P<0.05) between samples of dust from homes and mosques, indicating similar emission sources. Exposure scenarios using 5th percentile, median, mean, and 95th percentile levels were estimated for both adult and toddlers. Typical high-end, using median levels and high dust ingestion, exposure for adults were 0.02, 0.02, 0.03, <0.01, and 0.65 ng/kg bw/day and for toddlers 0.39, 0.45, 0.69, 0.01, and 15.2 ng/kg bw/day for ∑PBDEs, ∑NBFRs, ∑OCPs, ∑PCBs, and ∑OPFRs, respectively. To the authors' knowledge, this is the first study to document the presence of indoor OCs in Pakistani dust.
This is the first report on the analysis of various contaminants in indoor dust from Pakistan. Some of these chemicals are currently being used in different consumer products. The study will help to further an understanding of the levels of different organic contaminants (OCs) in Pakistani indoor environments and will enlighten the generally ignored area of environmental pollution in Pakistan. Furthermore, studies based on animal models have shown that some of the analyzed chemicals can cause different types of chronic toxicities. However, our results showed that the levels of estimated exposure via dust ingestion for all chemicals were several orders of magnitude lower than their reference dose (RfD) values or than those reported in studies from Belgium, China, Singapore, and the UK (Ali et al., 2011a; Harrad et al., 2008; Tan et al., 2007a,b; Van den Eede et al., 2011a; Wang et al., 2010).
Ali N
,Van den Eede N
,Dirtu AC
,Neels H
,Covaci A
... -
《-》
Country specific comparison for profile of chlorinated, brominated and phosphate organic contaminants in indoor dust. Case study for Eastern Romania, 2010.
We have evaluated the levels and specific profiles of several organohalogenated contaminants, including organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), and flame retardants (FRs), such as polybrominated diphenyl ethers (PBDEs), hexabromocyclododecanes (HBCDs), novel brominated FRs (NBFRs), and organophosphate FRs (OPFRs), in 47 indoor dust samples collected in 2010 from urban locations from Iasi, Eastern Romania. The dominant contaminants found in the samples were OPFRs (median sum OPFRs 7890 ng/g). Surprisingly, OCPs were also measured at high levels (median 1300 ng/g). Except for BDE 209 (median 275 ng/g), PBDEs were present in dust samples at relatively low levels (median sum PBDEs 8 ng/g). PCBs were also measured at low levels (median sum PCBs 35 ng/g), while NBFRs were only occasionally detected, showing a low usage in goods present on the Romanian market. The results of the present study evidence the existence of a multitude of chemical formulations in indoor dust. FRs are usually associated to human exposure via ingestion of dust, but other chemicals, such as OCPs, are not commonly reported in such matrix. Although OCPs were found at comparable levels with OPFRs in Romanian dust, OCPs possess a higher risk to human health due to their considerably lower reference dose (RfD) values. Indeed, the OCP exposure calculated for various intake scenarios was only 2-fold lower than the corresponding RfD. Therefore, the inclusion of OCPs as target chemicals in the indoor environment becomes important for countries where elevated levels in other environmental compartments have been previously shown.
Dirtu AC
,Ali N
,Van den Eede N
,Neels H
,Covaci A
... -
《-》
New insight into the levels, distribution and health risk diagnosis of indoor and outdoor dust-bound FRs in colder, rural and industrial zones of Pakistan.
This is the first robust study designed to probe selected flame retardants (FRs) in the indoor and outdoor dust of industrial, rural and background zones of Pakistan with special emphasis upon their occurrence, distribution and associated health risk. For this purpose, we analyzed FRs such as polybrominated diphenylethers (PBDEs), dechlorane plus (DP), novel brominated flame retardants (NBFRs) and organophosphate flame retardants (OPFRs) in the total of 82 dust samples (indoor and outdoor) collected three from each zone: industrial, rural and background. We found higher concentrations of FRs (PBDEs, DP, NBFRs and OPFRs) in industrial zones as compared to the rural and background zones. Our results reveal that the concentrations of studied FRs are relatively higher in the indoor dust samples being compared with the outdoor dust and they are ranked as: ∑OPFRs > ∑NBFRs > ∑PBDEs > ∑DP. A significant correlation in the FRs levels between the indoor and outdoor dust suggest the potential intermixing of these compounds between them. The principal component analysis/multiple linear regression predicts the percent contribution of FRs from different consumer products in the indoor and outdoor dust of industrial, rural and background zones to trace their source origin. The FRs detected in the background zones reveal the dust-bound FRs suspended in the air might be shifted from different warmer zones or consumers products available/used in the same zones. Hazard quotient (HQ) for FRs via indoor and outdoor dust intake at mean and high dust scenarios to the exposed populations (adults and toddlers) are found free of risk (HQ < 1) in the target zones. Furthermore, our nascent results will provide a baseline record of FRs (PBDEs, DP, NBFRs and OPFRs) concentrations in the indoor and outdoor dust of Pakistan.
Khan MU
,Li J
,Zhang G
,Malik RN
... -
《-》