Changes in levels of legacy and emerging organophosphorus flame retardants and plasticizers in indoor dust from a former e-waste recycling area in South China: 2013-2017.
To assess the impacts of e-waste regulations on environmental pollution, the levels, compositions, and human exposure assessment of organophosphorus flame retardants (PFRs), emerging PFRs (ePFRs), phthalate esters (PAEs), and alternative plasticizers (APs) were investigated in indoor dust samples collected from homes in a former e-waste dismantling area in 2013 and in 2017, 4 years after the implementation of legislation and regulations governing e-waste dismantling activities in this area. The median concentrations of ΣPFRs, ΣePFRs, ΣPAEs, and ΣAPs in dust decreased from 5680, 1650, 167,200, and 140,600 ng/g in 2013 to 1210, 476, 95,000, and 45,300 ng/g in 2017, respectively, suggesting that the national and local regulations prohibiting primitive e-waste dismantling activities is effective in mitigating the pollution status for these chemicals. In the analyzed dust samples, tris(1-chloro-2-propyl) phosphate (TCIPP), triphenyl phosphate (TPHP), resorcinol bis(diphenylphosphate) (RDP), and bisphenol A-bis(diphenyl phosphate) (BDP) were the major PFRs/ePFRs, contributing to 77% and 76% of the total PFRs/ePFRs in 2013 and 2017, respectively. Di(2-ethylhexyl) phthalate (DEHP), di-iso-nonyl phthalate (DINP), di-iso-decyl phthalate (DIDP), and di-n-butyl phthalate (DNBP) were the major PAEs/APs, with contributions of 89% and 95% for the total PAEs/APs in 2013 and 2017, respectively. The results of the human exposure assessment demonstrated that exposure to these levels of the target chemicals via dust ingestion and dermal contact was unlikely to cause health concerns for local residents.
Tang B
,Christia C
,Luo XJ
,Covaci A
,Poma G
,Mai BX
... -
《-》
A review on organophosphate flame retardants in indoor dust from China: Implications for human exposure.
To investigate the status of organophosphate flame retardants (OPFRs) in indoor dust in China, published scientific studies were systematically collected and analyzed. The analysis revealed large variations among microenvironments, including offices (median: 14.59 μg/g) and e-waste workshops (median: 13.36 μg/g), with high levels of OPFRs contamination. Chlorinated organophosphate ester flame retardants (Cl-OPFRs) were the dominant OPFRs (52-75%) in most indoor dust samples; however, in e-waste workshops, aryl- and alkyl-OPFRs were the most abundant. As an alternative flame retardant to polybrominated diphenyl ethers (PBDEs), OPFRs concentrations have increased in recent years in indoor environments in China. Urban sources are of greatest concern: Shanghai (mean: 13.54 μg/g), Guangzhou (mean: 10.76 μg/g), and Beijing (mean: 9.37 μg/g) have high ΣOPFRs contamination levels in indoor dust. Compared to other countries, the OPFRs concentrations in indoor dust in all studied microenvironments from China (median: 8.81 μg/g) were low. The estimated daily intakes of ΣOPFRs by dust ingestion for adults and children were 2.12 and 11.06 ng/kg/body weight/day (average), respectively. Human exposure to OPFRs through the accidental intake of indoor dust does not pose a direct health risk to the Chinese population. However, indoor dust ingestion is an important route for human exposure to OPFRs.
Chen Y
,Liu Q
,Ma J
,Yang S
,Wu Y
,An Y
... -
《-》