Transcriptome and metabolome analyses revealed the response mechanism of pepper roots to Phytophthora capsici infection.

来自 PUBMED

作者:

Lei GZhou KHChen XJHuang YQYuan XJLi GGXie YYFang R

展开

摘要:

Phytophthora root rot caused by the oomycete Phytophthora capsici is the most devastating disease in pepper production worldwide, and current management strategies have not been effective in preventing this disease. Therefore, the use of resistant varieties was regarded as an important part of disease management of P. capsici. However, our knowledge of the molecular mechanisms underlying the defense response of pepper roots to P. capsici infection is limited. A comprehensive transcriptome and metabolome approaches were used to dissect the molecular response of pepper to P. capsici infection in the resistant genotype A204 and the susceptible genotype A198 at 0, 24 and 48 hours post-inoculation (hpi). More genes and metabolites were induced at 24 hpi in A204 than A198, suggesting the prompt activation of defense responses in the resistant genotype, which can attribute two proteases, subtilisin-like protease and xylem cysteine proteinase 1, involved in pathogen recognition and signal transduction in A204. Further analysis indicated that the resistant genotype responded to P. capsici with fine regulation by the Ca2+- and salicylic acid-mediated signaling pathways, and then activation of downstream defense responses, including cell wall reinforcement and defense-related genes expression and metabolites accumulation. Among them, differentially expressed genes and differentially accumulated metabolites involved in the flavonoid biosynthesis pathways were uniquely activated in the resistant genotype A204 at 24 hpi, indicating a significant role of the flavonoid biosynthesis pathways in pepper resistance to P. capsici. The candidate transcripts may provide genetic resources that may be useful in the improvement of Phytophthora root rot-resistant characters of pepper. In addition, the model proposed in this study provides new insight into the defense response against P. capsici in pepper, and enhance our current understanding of the interaction of pepper-P. capsici.

收起

展开

DOI:

10.1186/s12864-023-09713-7

被引量:

2

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(184)

参考文献(59)

引证文献(2)

来源期刊

BMC GENOMICS

影响因子:4.542

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读