The dynamic transcriptome of pepper (Capsicum annuum) whole roots reveals an important role for the phenylpropanoid biosynthesis pathway in root resistance to Phytophthora capsici.
摘要:
Phytophthora root rot, caused by the soilborne oomycete pathogen Phytophthora capsici (Leon.), is a devastating disease causing significant losses in pepper production worldwide. To uncover the mechanism of root-mediated resistance to P. capsici we elucidated the dynamic transcriptome of whole pepper roots of the resistant accession CM334 and the susceptible accession NMCA10399 after P. capsici infection at 0, 12 and 36 hpi using RNA-Seq method. We detected that the roots of the resistant CM334 and the susceptible NMCA10399 had different transcriptional responses to P. capsici, suggesting the former activated a response to P. capsici earlier than the latter. KEGG enrichment analysis showed the pathways involved in the synthesis of secondary metabolites were those in which the most DEGs were enriched. Focusing on the gene regulation of phenylpropanoid biosynthesis-related genes, we found genes related to the key enzyme phenylalanine ammonia-lyase (PAL) were activated earlier with greater changes in the resistant accession than in the susceptible one. Moreover, genes related to cinnamoyl-CoA reductase (CCR1) were also upregulated in resistant roots but downregulated with great folder changes in susceptible roots. Briefly, we inferred that the phenylpropanoid biosynthesis pathway, especially cinnamaldehyde and lignin derived from its branches, played significant roles in pepper root resistance to P. capsici. These results provide new insight into root-mediated resistance to P. capsici in pepper.
收起
展开
关键词:
Capsicum annuum , Phytophthora root rot , RNA-Seq , Root-mediated resistance , Secondary metabolites
DOI:
10.1016/j.gene.2019.144288
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(430)
参考文献(0)
引证文献(15)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无