-
Comparative Chloroplast Genomics of 21 Species in Zingiberales with Implications for Their Phylogenetic Relationships and Molecular Dating.
Zingiberales includes eight families and more than 2600 species, with many species having important economic and ecological value. However, the backbone phylogenetic relationships of Zingiberales still remain controversial, as demonstrated in previous studies, and molecular dating based on chloroplast genomes has not been comprehensively studied for the whole order. Herein, 22 complete chloroplast genomes from 21 species in Zingiberales were sequenced, assembled, and analyzed. These 22 genomes displayed typical quadripartite structures, which ranged from 161,303 bp to 163,979 bp in length and contained 111-112 different genes. The genome structures, gene contents, simple sequence repeats, long repeats, and codon usage were highly conserved, with slight differences among these genomes. Further comparative analysis of the 111 complete chloroplast genomes of Zingiberales, including 22 newly sequenced ones and the remaining ones from the national center for biotechnology information (NCBI) database, identified three highly divergent regions comprising , , and -. Maximum likelihood and Bayesian inference phylogenetic analyses based on chloroplast genome sequences found identical topological structures and identified a strongly supported backbone of phylogenetic relationships. Cannaceae was sister to Marantaceae, forming a clade that was collectively sister to the clade of (Costaceae, Zingiberaceae) with strong support (bootstrap (BS) = 100%, and posterior probability (PP) = 0.99-1.0); Heliconiaceae was sister to the clade of (Lowiaceae, Strelitziaceae), then collectively sister to Musaceae with strong support (BS = 94-100%, and PP = 0.93-1.0); the clade of ((Cannaceae, Marantaceae), (Costaceae, Zingiberaceae)) was sister to the clade of (Musaceae, (Heliconiaceae, (Lowiaceae, Strelitziaceae))) with robust support (BS = 100%, and PP = 1.0). The results of divergence time estimation of Zingiberales indicated that the crown node of Zingiberales occurred approximately 85.0 Mya (95% highest posterior density (HPD) = 81.6-89.3 million years ago (Mya)), with major family-level lineages becoming from 46.8 to 80.5 Mya. These findings proved that chloroplast genomes could contribute to the study of phylogenetic relationships and molecular dating in Zingiberales, as well as provide potential molecular markers for further taxonomic and phylogenetic studies of Zingiberales.
Li DM
,Liu HL
,Pan YG
,Yu B
,Huang D
,Zhu GF
... -
《INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES》
-
Thirteen complete chloroplast genomes of the costaceae family: insights into genome structure, selective pressure and phylogenetic relationships.
Costaceae, commonly known as the spiral ginger family, consists of approximately 120 species distributed in the tropical regions of South America, Africa, and Southeast Asia, of which some species have important ornamental, medicinal and ecological values. Previous studies on the phylogenetic and taxonomic of Costaceae by using nuclear internal transcribed spacer (ITS) and chloroplast genome fragments data had low resolutions. Additionally, the structures, variations and molecular evolution of complete chloroplast genomes in Costaceae still remain unclear. Herein, a total of 13 complete chloroplast genomes of Costaceae including 8 newly sequenced and 5 from the NCBI GenBank database, representing all three distribution regions of this family, were comprehensively analyzed for comparative genomics and phylogenetic relationships.
The 13 complete chloroplast genomes of Costaceae possessed typical quadripartite structures with lengths from 166,360 to 168,966 bp, comprising a large single copy (LSC, 90,802 - 92,189 bp), a small single copy (SSC, 18,363 - 20,124 bp) and a pair of inverted repeats (IRs, 27,982 - 29,203 bp). These genomes coded 111 - 113 different genes, including 79 protein-coding genes, 4 rRNA genes and 28 - 30 tRNAs genes. The gene orders, gene contents, amino acid frequencies and codon usage within Costaceae were highly conservative, but several variations in intron loss, long repeats, simple sequence repeats (SSRs) and gene expansion on the IR/SC boundaries were also found among these 13 genomes. Comparative genomics within Costaceae identified five highly divergent regions including ndhF, ycf1-D2, ccsA-ndhD, rps15-ycf1-D2 and rpl16-exon2-rpl16-exon1. Five combined DNA regions (ycf1-D2 + ndhF, ccsA-ndhD + rps15-ycf1-D2, rps15-ycf1-D2 + rpl16-exon2-rpl16-exon1, ccsA-ndhD + rpl16-exon2-rpl16-exon1, and ccsA-ndhD + rps15-ycf1-D2 + rpl16-exon2-rpl16-exon1) could be used as potential markers for future phylogenetic analyses and species identification in Costaceae. Positive selection was found in eight protein-coding genes, including cemA, clpP, ndhA, ndhF, petB, psbD, rps12 and ycf1. Maximum likelihood and Bayesian phylogenetic trees using chloroplast genome sequences consistently revealed identical tree topologies with high supports between species of Costaceae. Three clades were divided within Costaceae, including the Asian clade, Costus clade and South American clade. Tapeinochilos was a sister of Hellenia, and Parahellenia was a sister to the cluster of Tapeinochilos + Hellenia with strong support in the Asian clade. The results of molecular dating showed that the crown age of Costaceae was about 30.5 Mya (95% HPD: 14.9 - 49.3 Mya), and then started to diverge into the Costus clade and Asian clade around 23.8 Mya (95% HPD: 10.1 - 41.5 Mya). The Asian clade diverged into Hellenia and Parahellenia at approximately 10.7 Mya (95% HPD: 3.5 - 25.1 Mya).
The complete chloroplast genomes can resolve the phylogenetic relationships of Costaceae and provide new insights into genome structures, variations and evolution. The identified DNA divergent regions would be useful for species identification and phylogenetic inference in Costaceae.
Li DM
,Pan YG
,Liu HL
,Yu B
,Huang D
,Zhu GF
... -
《BMC GENOMICS》
-
Resolving the rapid plant radiation of early diverging lineages in the tropical Zingiberales: Pushing the limits of genomic data.
Many cases of rapid evolutionary radiations in plant and animal lineages are known; however phylogenetic relationships among these lineages have been difficult to resolve by systematists. Increasing amounts of genomic data have been sequentially applied in an attempt to resolve these radiations, dissecting their evolutionary patterns into a series of bifurcating events. Here we explore one such rapid radiation in the tropical plant order Zingiberales (the bananas and relatives) which includes eight families, approximately 110 genera, and more than 2600 species. One clade, the "Ginger families", including (Costaceae + Zingiberaceae) (Marantaceae + Cannaceae), has been well-resolved and well-supported in all previous studies. However, well-supported reconstructions among the "Banana families" (Musaceae, Heliconiaceae, Lowiaceae, Strelitziaceae), which most likely diverged about 90 Mya, have been difficult to confirm. Supported with anatomical, morphological, single locus, and genome-wide data, nearly every possible phylogenetic placement has been proposed for these families. In an attempt to resolve this complex evolutionary event, hybridization-based target enrichment was used to obtain sequences from up to 378 putatively orthologous low-copy nuclear genes (all ≥ 960 bp). Individual gene trees recovered multiple topologies among the early divergent lineages, with varying levels of support for these relationships. One topology of the "Banana families" (Musaceae (Heliconiaceae (Lowiaceae + Strelitziaceae))), which has not been suggested until now, was almost consistently recovered in all multilocus analyses of the nuclear dataset (concatenated - ExaML, coalescent - ASTRAL and ASTRID, supertree - MRL, and Bayesian concordance - BUCKy). Nevertheless, the multiple topologies recovered among these lineages suggest that even large amounts of genomic data might not be able to fully resolve relationships at this phylogenetic depth. This lack of well-supported resolution could suggest methodological problems (i.e., violation of model assumptions in both concatenated and coalescent analyses) or more likely reflect an evolutionary history shaped by an explosive, rapid, and nearly simultaneous polychotomous radiation in this group of plants towards the end of the Cretaceous, perhaps driven by vertebrate pollinator selection.
Carlsen MM
,Fér T
,Schmickl R
,Leong-Škorničková J
,Newman M
,Kress WJ
... -
《-》
-
Resolving ancient radiations: can complete plastid gene sets elucidate deep relationships among the tropical gingers (Zingiberales)?
Zingiberales comprise a clade of eight tropical monocot families including approx. 2500 species and are hypothesized to have undergone an ancient, rapid radiation during the Cretaceous. Zingiberales display substantial variation in floral morphology, and several members are ecologically and economically important. Deep phylogenetic relationships among primary lineages of Zingiberales have proved difficult to resolve in previous studies, representing a key region of uncertainty in the monocot tree of life.
Next-generation sequencing was used to construct complete plastid gene sets for nine taxa of Zingiberales, which were added to five previously sequenced sets in an attempt to resolve deep relationships among families in the order. Variation in taxon sampling, process partition inclusion and partition model parameters were examined to assess their effects on topology and support.
Codon-based likelihood analysis identified a strongly supported clade of ((Cannaceae, Marantaceae), (Costaceae, Zingiberaceae)), sister to (Musaceae, (Lowiaceae, Strelitziaceae)), collectively sister to Heliconiaceae. However, the deepest divergences in this phylogenetic analysis comprised short branches with weak support. Additionally, manipulation of matrices resulted in differing deep topologies in an unpredictable fashion. Alternative topology testing allowed statistical rejection of some of the topologies. Saturation fails to explain observed topological uncertainty and low support at the base of Zingiberales. Evidence for conflict among the plastid data was based on a support metric that accounts for conflicting resampled topologies.
Many relationships were resolved with robust support, but the paucity of character information supporting the deepest nodes and the existence of conflict suggest that plastid coding regions are insufficient to resolve and support the earliest divergences among families of Zingiberales. Whole plastomes will continue to be highly useful in plant phylogenetics, but the current study adds to a growing body of literature suggesting that they may not provide enough character information for resolving ancient, rapid radiations.
Barrett CF
,Specht CD
,Leebens-Mack J
,Stevenson DW
,Zomlefer WB
,Davis JI
... -
《-》
-
Comparative chloroplast genomics, phylogenetic relationships and molecular markers development of Aglaonema commutatum and seven green cultivars of Aglaonema.
Aglaonema commutatum is a famous species in the Aglaonema genus, which has important ornamental and economic value. However, its chloroplast genome information and phylogenetic relationships among popular green cultivars of Aglaonema in southern China have not been reported. Herein, chloroplast genomes of one variety of A. commutatum and seven green cultivars of Aglaonema, namely, A. commutatum 'San Remo', 'Kai Sa', 'Pattaya Beauty', 'Sapphire', 'Silver Queen', 'Snow White', 'White Gem', and 'White Horse Prince', were sequenced and assembled for comparative analysis and phylogeny. These eight genomes possessed a typical quadripartite structure that consisted of a LSC region (90,799-91,486 bp), an SSC region (20,508-21,137 bp) and a pair of IR regions (26,661-26,750 bp). Each genome contained 112 different genes, comprising 79 protein-coding genes, 29 tRNA genes and 4 rRNA genes. The gene orders, GC contents, codon usage frequency, and IR/SC boundaries were highly conserved among these eight genomes. Long repeats, SSRs, SNPs and indels were analyzed among these eight genomes. Comparative analysis of 15 Aglaonema chloroplast genomes identified 7 highly variable regions, including trnH-GUG-exon1-psbA, trnS-GCU-trnG-UCC-exon1, trnY-GUA-trnE-UUC, psbC-trnS-UGA, trnF-GAA-ndhJ, ccsA-ndhD, and rps15-ycf1-D2. Reconstruction of the phylogenetic trees based on chloroplast genomes, strongly supported that Aglaonema was a sister to Anchomanes, and that the Aglaonema genus was classified into two sister clades including clade I and clade II, which corresponded to two sections, Aglaonema and Chamaecaulon, respectively. One variety and five cultivars, including A. commutatum 'San Remo', 'Kai Sa', 'Pattaya Beauty', 'Silver Queen', 'Snow White', and 'White Horse Prince', were classified into clade I; and the rest of the two cultivars, including 'Sapphire' and 'White Gem', were classified into clade II. Positive selection was observed in 34 protein-coding genes at the level of the amino acid sites among 77 chloroplast genomes of the Araceae family. Based on the highly variable regions and SSRs, 4 DNA markers were developed to differentiate the clade I and clade II in Aglaonema. In conclusion, this study provided chloroplast genomic resources for Aglaonema, which were useful for its classification and phylogeny.
Li DM
,Pan YG
,Wu XY
,Zou SP
,Wang L
,Zhu GF
... -
《Scientific Reports》