
自引率: 5.7%
被引量: 77286
通过率: 暂无数据
审稿周期: 1.65
版面费用: 暂无数据
国人发稿量: 788
投稿须知/期刊简介:
International Journal of Molecular Sciences (ISSN 1422-0067; CODEN: IJMCFK; ISSN 1661-6596 for printed edition) is an open access journal providing an advanced forum for chemistry, molecular physics and molecular biology, and is published monthly online by MDPI. Open Access - free for readers, with publishing fees paid by authors or their institutions. High visibility: indexed by the Science Citation Index Expanded (Web of Science), MEDLINE (PubMed) and other databases. Rapid publication: manuscripts are peer-reviewed and a first decision provided to authors approximately 22 days after submission; acceptance to publication is undertaken in 9 days (median values for 2015). Aims The International Journal of Molecular Sciences (ISSN 1422-0067) provides an advanced forum for chemistry, molecular physics (chemical physics and physical chemistry) and molecular biology. It publishes research articles, reviews, communications and short notes. Our aim is to encourage scientists to publish their theoretical and experimental results in as much detail as possible. Therefore, there is no restriction on the length of the papers or the number of electronics supplementary files. For articles with computational results, the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material (including animated pictures, videos, interactive Excel sheets, software executables and others). Scope General subject areas include: fundamental theoretical problems of broad interest in biology, chemistry and physics where molecules are the object of study; important experimental technical progress of broad interest in biology, chemistry and physics, where molecules are the object of study; and application of the theories and novel technologies to specific experimental studies and calculations.
期刊描述简介:
The International Journal of Molecular Sciences (ISSN 1422-0067) provides an advanced forum for chemistry, molecular physics (chemical physics and physical chemistry) and molecular biology. It publishes research articles, reviews, communications and short notes. Our aim is to encourage scientists to publish their theoretical and experimental results in as much detail as possible. Therefore, there is no restriction on the length of the papers or the number of electronics supplementary files. For articles with computational results, the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material (including animated pictures, videos, interactive Excel sheets, software executables and others). General subject areas include: fundamental theoretical problems of broad interest in biology, chemistry and physics where molecules are the object of study; important experimental technical progress of broad interest in biology, chemistry and physics, where molecules are the object of study; and application of the theories and novel technologies to specific experimental studies and calculations.
-
Comparison of Long-Read Methods for Sequencing and Assembly of Lepidopteran Pest Genomes.
Lepidopteran species are mostly pests, causing serious annual economic losses. High-quality genome sequencing and assembly uncover the genetic foundation of pest occurrence and provide guidance for pest control measures. Long-read sequencing technology and assembly algorithm advances have improved the ability to timeously produce high-quality genomes. Lepidoptera includes a wide variety of insects with high genetic diversity and heterozygosity. Therefore, the selection of an appropriate sequencing and assembly strategy to obtain high-quality genomic information is urgently needed. This research used silkworm as a model to test genome sequencing and assembly through high-coverage datasets by de novo assemblies. We report the first nearly complete telomere-to-telomere reference genome of silkworm (P50T strain) produced by Pacific Biosciences (PacBio) HiFi sequencing, and highly contiguous and complete genome assemblies of two other silkworm strains by Oxford Nanopore Technologies (ONT) or PacBio continuous long-reads (CLR) that were unrepresented in the public database. Assembly quality was evaluated by use of BUSCO, Inspector, and EagleC. It is necessary to choose an appropriate assembler for draft genome construction, especially for low-depth datasets. For PacBio CLR and ONT sequencing, NextDenovo is superior. For PacBio HiFi sequencing, hifiasm is better. Quality assessment is essential for genome assembly and can provide better and more accurate results. For chromosome-level high-quality genome construction, we recommend using 3D-DNA with EagleC evaluation. Our study references how to obtain and evaluate high-quality genome assemblies, and is a resource for biological control, comparative genomics, and evolutionary studies of Lepidopteran pests and related species.
被引量:- 发表:1970
-
Comparison of De Novo Assembly Strategies for Bacterial Genomes.
(1) Background: Short-read sequencing allows for the rapid and accurate analysis of the whole bacterial genome but does not usually enable complete genome assembly. Long-read sequencing greatly assists with the resolution of complex bacterial genomes, particularly when combined with short-read Illumina data. However, it is not clear how different assembly strategies affect genomic accuracy, completeness, and protein prediction. (2) Methods: we compare different assembly strategies for , which causes Glässer's disease, characterized by fibrinous polyserositis and arthritis, in swine by using Illumina sequencing and long reads from the sequencing platforms of either Oxford Nanopore Technologies (ONT) or SMRT Pacific Biosciences (PacBio). (3) Results: Assembly with either PacBio or ONT reads, followed by polishing with Illumina reads, facilitated high-quality genome reconstruction and was superior to the long-read-only assembly and hybrid-assembly strategies when evaluated in terms of accuracy and completeness. An equally excellent method was correction with Homopolish after the ONT-only assembly, which had the advantage of avoiding hybrid sequencing with Illumina. Furthermore, by aligning transcripts to assembled genomes and their predicted CDSs, the sequencing errors of the ONT assembly were mainly indels that were generated when homopolymer regions were sequenced, thus critically affecting protein prediction. Polishing can fill indels and correct mistakes. (4) Conclusions: The assembly of bacterial genomes can be directly achieved by using long-read sequencing techniques. To maximize assembly accuracy, it is essential to polish the assembly with homologous sequences of related genomes or sequencing data from short-read technology.
被引量:14 发表:1970
-
Identification of miRNAs and Their Targets Involved in Flower and Fruit Development across Domesticated and Wild Capsicum Species.
MicroRNAs (miRNAs) are regulators of the post-transcription stage of gene activity documented to play central roles in flower and fruit development in model plant species. However, little is known about their roles and differences in domesticated and wild species. In this study, we used high-throughput sequencing to analyze the miRNA content at three developmental stages (flower, small fruit, and middle fruit) from two cultivated ( and ) and two wild ( and ) pepper species. This analysis revealed 22 known and 27 novel miRNAs differentially expressed across species and tissues. A number of stage- and species-specific miRNAs were identified, and Gene Ontology terms were assigned to 138 genes targeted by the miRNAs. Most Gene Ontology terms were for the categories "genetic information processing", "signaling and cellular processes", "amino acid metabolism", and "carbohydrate metabolism". Enriched KEGG analysis revealed the pathways amino acids, sugar and nucleotide metabolism, starch and sucrose metabolism, and fructose-mannose metabolism among the principal ones regulated by miRNAs during pepper fruit ripening. We predicted miRNA-target gene interactions regulating flowering time and fruit development, including miR156/157 with genes, miR159 with GaMYB proteins, miR160 with ARF genes, miR172 with AP2-like transcription factors, and miR408 with gene across the different species. In addition, novel miRNAs play an important role in regulating interactions potentially controlling plant pathogen defense and fruit quality via fructokinase, alpha-L-arabinofuranosidase, and aromatic and neutral amino acid transporter. Overall, the small RNA-sequencing results from this study represent valuable information that provides a solid foundation for uncovering the miRNA-mediated mechanisms of flower and fruit development between domesticated and wild species.
被引量:8 发表:1970
-
Benchmarking Long-Read Assemblers for Genomic Analyses of Bacterial Pathogens Using Oxford Nanopore Sequencing.
Oxford Nanopore sequencing can be used to achieve complete bacterial genomes. However, the error rates of Oxford Nanopore long reads are greater compared to Illumina short reads. Long-read assemblers using a variety of assembly algorithms have been developed to overcome this deficiency, which have not been benchmarked for genomic analyses of bacterial pathogens using Oxford Nanopore long reads. In this study, long-read assemblers, namely Canu, Flye, Miniasm/Racon, Raven, Redbean, and Shasta, were thus benchmarked using Oxford Nanopore long reads of bacterial pathogens. Ten species were tested for mediocre- and low-quality simulated reads, and 10 species were tested for real reads. Raven was the most robust assembler, obtaining complete and accurate genomes. All Miniasm/Racon and Raven assemblies of mediocre-quality reads provided accurate antimicrobial resistance (AMR) profiles, while the Raven assembly of with low-quality reads was the only assembly with an accurate AMR profile among all assemblers and species. All assemblers functioned well for predicting virulence genes using mediocre-quality and real reads, whereas only the Raven assemblies of low-quality reads had accurate numbers of virulence genes. Regarding multilocus sequence typing (MLST), Miniasm/Racon was the most effective assembler for mediocre-quality reads, while only the Raven assemblies of O157:H7 and with low-quality reads showed positive MLST results. Miniasm/Racon and Raven were the best performers for MLST using real reads. The Miniasm/Racon and Raven assemblies showed accurate phylogenetic inference. For the pan-genome analyses, Raven was the strongest assembler for simulated reads, whereas Miniasm/Racon and Raven performed the best for real reads. Overall, the most robust and accurate assembler was Raven, closely followed by Miniasm/Racon.
被引量:17 发表:1970