-
Resolving ancient radiations: can complete plastid gene sets elucidate deep relationships among the tropical gingers (Zingiberales)?
Zingiberales comprise a clade of eight tropical monocot families including approx. 2500 species and are hypothesized to have undergone an ancient, rapid radiation during the Cretaceous. Zingiberales display substantial variation in floral morphology, and several members are ecologically and economically important. Deep phylogenetic relationships among primary lineages of Zingiberales have proved difficult to resolve in previous studies, representing a key region of uncertainty in the monocot tree of life.
Next-generation sequencing was used to construct complete plastid gene sets for nine taxa of Zingiberales, which were added to five previously sequenced sets in an attempt to resolve deep relationships among families in the order. Variation in taxon sampling, process partition inclusion and partition model parameters were examined to assess their effects on topology and support.
Codon-based likelihood analysis identified a strongly supported clade of ((Cannaceae, Marantaceae), (Costaceae, Zingiberaceae)), sister to (Musaceae, (Lowiaceae, Strelitziaceae)), collectively sister to Heliconiaceae. However, the deepest divergences in this phylogenetic analysis comprised short branches with weak support. Additionally, manipulation of matrices resulted in differing deep topologies in an unpredictable fashion. Alternative topology testing allowed statistical rejection of some of the topologies. Saturation fails to explain observed topological uncertainty and low support at the base of Zingiberales. Evidence for conflict among the plastid data was based on a support metric that accounts for conflicting resampled topologies.
Many relationships were resolved with robust support, but the paucity of character information supporting the deepest nodes and the existence of conflict suggest that plastid coding regions are insufficient to resolve and support the earliest divergences among families of Zingiberales. Whole plastomes will continue to be highly useful in plant phylogenetics, but the current study adds to a growing body of literature suggesting that they may not provide enough character information for resolving ancient, rapid radiations.
Barrett CF
,Specht CD
,Leebens-Mack J
,Stevenson DW
,Zomlefer WB
,Davis JI
... -
《-》
-
Resolving the rapid plant radiation of early diverging lineages in the tropical Zingiberales: Pushing the limits of genomic data.
Many cases of rapid evolutionary radiations in plant and animal lineages are known; however phylogenetic relationships among these lineages have been difficult to resolve by systematists. Increasing amounts of genomic data have been sequentially applied in an attempt to resolve these radiations, dissecting their evolutionary patterns into a series of bifurcating events. Here we explore one such rapid radiation in the tropical plant order Zingiberales (the bananas and relatives) which includes eight families, approximately 110 genera, and more than 2600 species. One clade, the "Ginger families", including (Costaceae + Zingiberaceae) (Marantaceae + Cannaceae), has been well-resolved and well-supported in all previous studies. However, well-supported reconstructions among the "Banana families" (Musaceae, Heliconiaceae, Lowiaceae, Strelitziaceae), which most likely diverged about 90 Mya, have been difficult to confirm. Supported with anatomical, morphological, single locus, and genome-wide data, nearly every possible phylogenetic placement has been proposed for these families. In an attempt to resolve this complex evolutionary event, hybridization-based target enrichment was used to obtain sequences from up to 378 putatively orthologous low-copy nuclear genes (all ≥ 960 bp). Individual gene trees recovered multiple topologies among the early divergent lineages, with varying levels of support for these relationships. One topology of the "Banana families" (Musaceae (Heliconiaceae (Lowiaceae + Strelitziaceae))), which has not been suggested until now, was almost consistently recovered in all multilocus analyses of the nuclear dataset (concatenated - ExaML, coalescent - ASTRAL and ASTRID, supertree - MRL, and Bayesian concordance - BUCKy). Nevertheless, the multiple topologies recovered among these lineages suggest that even large amounts of genomic data might not be able to fully resolve relationships at this phylogenetic depth. This lack of well-supported resolution could suggest methodological problems (i.e., violation of model assumptions in both concatenated and coalescent analyses) or more likely reflect an evolutionary history shaped by an explosive, rapid, and nearly simultaneous polychotomous radiation in this group of plants towards the end of the Cretaceous, perhaps driven by vertebrate pollinator selection.
Carlsen MM
,Fér T
,Schmickl R
,Leong-Škorničková J
,Newman M
,Kress WJ
... -
《-》
-
Comparative Chloroplast Genomics of 21 Species in Zingiberales with Implications for Their Phylogenetic Relationships and Molecular Dating.
Zingiberales includes eight families and more than 2600 species, with many species having important economic and ecological value. However, the backbone phylogenetic relationships of Zingiberales still remain controversial, as demonstrated in previous studies, and molecular dating based on chloroplast genomes has not been comprehensively studied for the whole order. Herein, 22 complete chloroplast genomes from 21 species in Zingiberales were sequenced, assembled, and analyzed. These 22 genomes displayed typical quadripartite structures, which ranged from 161,303 bp to 163,979 bp in length and contained 111-112 different genes. The genome structures, gene contents, simple sequence repeats, long repeats, and codon usage were highly conserved, with slight differences among these genomes. Further comparative analysis of the 111 complete chloroplast genomes of Zingiberales, including 22 newly sequenced ones and the remaining ones from the national center for biotechnology information (NCBI) database, identified three highly divergent regions comprising , , and -. Maximum likelihood and Bayesian inference phylogenetic analyses based on chloroplast genome sequences found identical topological structures and identified a strongly supported backbone of phylogenetic relationships. Cannaceae was sister to Marantaceae, forming a clade that was collectively sister to the clade of (Costaceae, Zingiberaceae) with strong support (bootstrap (BS) = 100%, and posterior probability (PP) = 0.99-1.0); Heliconiaceae was sister to the clade of (Lowiaceae, Strelitziaceae), then collectively sister to Musaceae with strong support (BS = 94-100%, and PP = 0.93-1.0); the clade of ((Cannaceae, Marantaceae), (Costaceae, Zingiberaceae)) was sister to the clade of (Musaceae, (Heliconiaceae, (Lowiaceae, Strelitziaceae))) with robust support (BS = 100%, and PP = 1.0). The results of divergence time estimation of Zingiberales indicated that the crown node of Zingiberales occurred approximately 85.0 Mya (95% highest posterior density (HPD) = 81.6-89.3 million years ago (Mya)), with major family-level lineages becoming from 46.8 to 80.5 Mya. These findings proved that chloroplast genomes could contribute to the study of phylogenetic relationships and molecular dating in Zingiberales, as well as provide potential molecular markers for further taxonomic and phylogenetic studies of Zingiberales.
Li DM
,Liu HL
,Pan YG
,Yu B
,Huang D
,Zhu GF
... -
《INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES》
-
Unraveling the evolutionary radiation of the families of the Zingiberales using morphological and molecular evidence.
The Zingiberales are a tropical group of monocotyledons that includes bananas, gingers, and their relatives. The phylogenetic relationships among the eight families currently recognized are investigated here by using parsimony and maximum likelihood analyses of four character sets: morphological features (1), and sequence data of the (2) chloroplast rbcL gene, (3) chloroplast atpB gene, and (4) nuclear 18S rDNA gene. Outgroups for the analyses include the closely related Commelinaceae + Philydraceae + Haemodoraceae + Pontederiaceae + Hanguanaceae as well as seven more distantly related monocots and paleoherbs. Only slightly different estimates of evolutionary relationships result from the analysis of each character set. The morphological data yield a single fully resolved most-parsimonious tree. None of the molecular datasets alone completely resolves interfamilial relationships. The analyses of the combined molecular dataset provide more resolution than do those of individual genes, and the addition of the morphological data provides a well-supported estimate of phylogenetic relationships: (Musaceae ((Strelitziaceae, Lowiaceae) (Heliconiaceae ((Zingiberaceae, Costaceae) (Cannaceae, Marantaceae))))). Evidence from branch lengths in the parsimony analyses and from the fossil record suggests that the Zingiberales originated in the Early Cretaceous and underwent a rapid radiation in the mid-Cretaceous, by which time most extant family lineages had diverged.
Kress WJ
,Prince LM
,Hahn WJ
,Zimmer EA
... -
《SYSTEMATIC BIOLOGY》
-
Monocot plastid phylogenomics, timeline, net rates of species diversification, the power of multi-gene analyses, and a functional model for the origin of monocots.
We present the first plastome phylogeny encompassing all 77 monocot families, estimate branch support, and infer monocot-wide divergence times and rates of species diversification.
We conducted maximum likelihood analyses of phylogeny and BAMM studies of diversification rates based on 77 plastid genes across 545 monocots and 22 outgroups. We quantified how branch support and ascertainment vary with gene number, branch length, and branch depth.
Phylogenomic analyses shift the placement of 16 families in relation to earlier studies based on four plastid genes, add seven families, date the divergence between monocots and eudicots+Ceratophyllum at 136 Mya, successfully place all mycoheterotrophic taxa examined, and support recognizing Taccaceae and Thismiaceae as separate families and Arecales and Dasypogonales as separate orders. Only 45% of interfamilial divergences occurred after the Cretaceous. Net species diversification underwent four large-scale accelerations in PACMAD-BOP Poaceae, Asparagales sister to Doryanthaceae, Orchidoideae-Epidendroideae, and Araceae sister to Lemnoideae, each associated with specific ecological/morphological shifts. Branch ascertainment and support across monocots increase with gene number and branch length, and decrease with relative branch depth. Analysis of entire plastomes in Zingiberales quantifies the importance of non-coding regions in identifying and supporting short, deep branches.
We provide the first resolved, well-supported monocot phylogeny and timeline spanning all families, and quantify the significant contribution of plastome-scale data to resolving short, deep branches. We outline a new functional model for the evolution of monocots and their diagnostic morphological traits from submersed aquatic ancestors, supported by convergent evolution of many of these traits in aquatic Hydatellaceae (Nymphaeales).
Givnish TJ
,Zuluaga A
,Spalink D
,Soto Gomez M
,Lam VKY
,Saarela JM
,Sass C
,Iles WJD
,de Sousa DJL
,Leebens-Mack J
,Chris Pires J
,Zomlefer WB
,Gandolfo MA
,Davis JI
,Stevenson DW
,dePamphilis C
,Specht CD
,Graham SW
,Barrett CF
,Ané C
... -
《-》