Machine learning-based automatic proton therapy planning: Impact of post-processing and dose-mimicking in plan robustness.

来自 PUBMED

摘要:

Automated treatment planning strategies are being widely implemented in clinical routines to reduce inter-planner variability, speed up the optimization process, and improve plan quality. This study aims to evaluate the feasibility and quality of intensity-modulated proton therapy (IMPT) plans generated with four different knowledge-based planning (KBP) pipelines fully integrated into a commercial treatment planning system (TPS). A data set containing 60 oropharyngeal cancer patients was split into 11 folds, each containing 47 patients for training, five patients for validation, and five patients for testing. A dose prediction model was trained on each of the folds, resulting in a total of 11 models. Three patients were left out in order to assess if the differences introduced between models were significant. From voxel-based dose predictions, we analyze the two steps that follow the dose prediction: post-processing of the predicted dose and dose mimicking (DM). We focused on the effect of post-processing (PP) or no post-processing (NPP) combined with two different DM algorithms for optimization: the one available in the commercial TPS RayStation (RSM) and a simpler isodose-based mimicking (IBM). Using 55 test patients (five test patients for each model), we evaluated the quality and robustness of the plans generated by the four proposed KBP pipelines (PP-RSM, PP-IBM, NPP-RSM, NPP-IBM). After robust evaluation, dose-volume histogram (DVH) metrics in nominal and worst-case scenarios were compared to those of the manually generated plans. Nominal doses from the four KBP pipelines showed promising results achieving comparable target coverage and improved dose to organs at risk (OARs) compared to the manual plans. However, too optimistic post-processing applied to the dose prediction (i.e. important decrease of the dose to the organs) compromised the robustness of the plans. Even though RSM seemed to partially compensate for the lack of robustness in the PP plans, still 65% of the patients did not achieve the expected robustness levels. NPP-RSM plans seemed to achieve the best trade-off between robustness and OAR sparing. PP and DM strategies are crucial steps to generate acceptable robust and deliverable IMPT plans from ML-predicted doses. Before the clinical implementation of any KBP pipeline, the PP and DM parameters predefined by the commercial TPS need to be modified accordingly with a comprehensive feedback loop in which the robustness of the final dose calculations is evaluated. With the right choice of PP and DM parameters, KBP strategies have the potential to generate IMPT plans within clinically acceptable levels comparable to plans manually generated by dosimetrists.

收起

展开

DOI:

10.1002/mp.16408

被引量:

4

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(201)

参考文献(0)

引证文献(4)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读