A novel and individualized robust optimization method using normalized dose interval volume constraints (NDIVC) for intensity-modulated proton radiotherapy.

来自 PUBMED

作者:

Shan JSio TTLiu CSchild SEBues MLiu W

展开

摘要:

Intensity-modulated proton therapy (IMPT) is known to be sensitive to patient setup and range uncertainty issues. Multiple robust optimization methods have been developed to mitigate the impact of these uncertainties. Here, we propose a new robust optimization method, which provides an alternative way of robust optimization in IMPT, and is clinically practical, which will enable users to control the balance between nominal plan quality and plan robustness in a user-defined fashion. We calculated nine individual dose distributions which corresponded to one nominal and eight extreme scenarios caused by patient setup and proton beam's range uncertainties. For each voxel, the normalized dose interval (NDI) is defined as the full dose range variation divided by the maximum dose in all uncertainty scenarios (NDI = [max - min dose]/max dose), which was then used to calculate the normalized dose interval volume histogram (NDIVH) curves. The areas under the NDIVH curves were used to quantify plan robustness. A normalized dose interval volume constraint (NDIVC) applied to the target was incorporated to specify the desired robustness which was user-defined. Users could then explore the trade-off between nominal plan quality and plan robustness by adjusting the position of the NDIVCs on the NDIVH curves freely. We benchmarked our method using one lung, five head and neck (H&N), and three prostate cases by comparing our results to those derived using the voxel-wise worst-case robust optimization. Using the benchmark cases, our new method achieved quality IMPT plans comparable to those derived from the voxel-wise worst-case robust optimization for both nominal plan quality and plan robustness in general; even more conformal and more homogeneous target dose distributions in some cases, if proper NDIVCs were applied. The AUC under NDIVH, as a precise quantitative index of plan robustness, was consistent with DVH bandwidths. Additionally, we demonstrated the feasibility of adjusting the position of NDIVCs in the NDIVH curves which allowed users to explore the trade-off between nominal plan quality and plan robustness. The NDIVH-based robust optimization method provided a novel and individualized way of robust optimization in IMPT, and enables users to adjust the balance between nominal plan quality and plan robustness in a user-defined fashion. This method is applicable for continued improvement and developing the next generation of IMPT planning algorithms in the future.

收起

展开

DOI:

10.1002/mp.13276

被引量:

10

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(418)

参考文献(0)

引证文献(10)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读