Automated Robust Planning for IMPT in Oropharyngeal Cancer Patients Using Machine Learning.

来自 PUBMED

摘要:

The aim of this study was to evaluate an automated treatment planning method for robustly optimized intensity modulated proton therapy (IMPT) plans for oropharyngeal carcinoma patients and to compare the results with manually optimized robust IMPT plans. An atlas regression forest-based machine learning (ML) model for dose prediction was trained on CT scans, contours, and dose distributions of robust IMPT plans of 88 oropharyngeal cancer (OPC) patients. The ML model was combined with a robust voxel and dose volume histogram-based dose mimicking optimization algorithm for 21 perturbed scenarios to generate a machine-deliverable plan from the predicted dose distribution. Machine learning optimization (MLO) configuration was performed using a cross-validation approach with 3 × 8 tuning patients and comprised of adjustments to the mimicking optimization, to generate higher-quality MLO plans. Independent testing of the MLO algorithm was performed with another 25 patients. Plan quality of clinical and MLO plans was evaluated by the clinical target volume (D98% voxel-wise minimum dose >94%), organ at risk (OAR) doses, and the normal tissue complication probability (NTCP) (sum (Σ) of grade-2 and grade-3 dysphagia and xerostomia). Adequate robust target coverage was achieved in 24/25 clinical plans and in 23/25 MLO plans in the primary clinical target volume (CTV). In the elective CTV, 22/25 clinical plans and 24/25 MLO plans passed the robust target coverage evaluation threshold. The MLO average Σgrade 2 and Σgrade 3 NTCPs were comparable to the clinical plans (Σgrade 2 NTCPs: clinical 47.5% vs MLO 48.4%, Σgrade 3 NTCPs: clinical 11.9% vs MLO 12.3%). Significant increases in OAR average doses in MLO plans were found in the pharynx constrictor muscles (163 cGy, P = .002) and cervical esophagus (265 cGy, P = .002). The MLO plans were created within 45 minutes. This study showed that automated MLO planning can generate robustly optimized MLO plans with quality comparable to clinical plans in OPC patients.

收起

展开

DOI:

10.1016/j.ijrobp.2022.12.004

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(132)

参考文献(0)

引证文献(0)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读