Automated segmentation and classification of hand thermal images in rheumatoid arthritis using machine learning algorithms: A comparison with quantum machine learning technique.

来自 PUBMED

作者:

Ahalya RKSnekhalatha UDhanraj V

展开

摘要:

The aims and objectives of the study were to i) perform image segmentation using a color-based k-means clustering algorithm and feature extraction using binary robust invariant scalable key points (BRISK), maximum stable extremal regions (MSER), features from accelerated segment test (FAST), Harris, and orientated FAST and rotated BRIEF (ORB); ii) compare the performance of classical machine learning techniques such as LogitBoost, Bagging, and SVM with a quantum machine learning technique. For the proposed study, 240 hand thermal images were acquired in the dorsal view and ventral view of both the right and left-hand regions of RA and normal subjects. The hot spot regions from the thermograms were segmented using a color-based k-means clustering technique. The features from the segmented hot spot region were extracted using different feature extraction methods. Finally, normal and RA groups were categorized using LogitBoost, Bagging, and support vector machine (SVM) classifiers. The proposed study used two testing methods, such as 10-fold cross-validation and a percentage split of 80-20%. The LogitBoost classifier outperformed with an accuracy of 93.75% using the 10-fold cross-validation technique compared to other classifiers. Also, the quantum support vector machine (QSVM) obtained a prediction accuracy of 92.7%. Furthermore, the QSVM model reduces the computational cost and training time of the model to classify the RA and normal subjects. Thus, thermograms with classical machine learning and quantum machine learning algorithms could be considered a feasible technique for classifying normal and RA groups.

收起

展开

DOI:

10.1016/j.jtherbio.2022.103404

被引量:

5

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(163)

参考文献(0)

引证文献(5)

来源期刊

JOURNAL OF THERMAL BIOLOGY

影响因子:3.186

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读