JOURNAL OF THERMAL BIOLOGY
热生物学杂志
ISSN: 0306-4565
自引率: 13.2%
发文量: 232
被引量: 4157
影响因子: 3.186
通过率: 暂无数据
出版周期: 双月刊
审稿周期: 5
审稿费用: 0
版面费用: 暂无数据
年文章数: 232
国人发稿量: 30

投稿须知/期刊简介:

The journal publishes results of work in which the central theme is the mechanisms by which temperature affects living organisms. It is wide in scope and includes studies at the biochemical and physiological levels and also at the level of the organism. The following are examples of the subject areas covered: Studies on the mechanisms involved in acclimation and acclimatization to temperature in plants and animals, including the phenomena of hibernation, dormancy, aestivation and diapause. The mechanisms of cellular heat and cold injury, and of the resistance of organisms to extremes of temperature. Effects of temperature on growth and development, ageing and life-span. Effects of temperature on micro-organisms. Behavioural and physiological regulation of body temperature. Medical applications of hypo- and hyperthermy, excluding descriptive clinical studies and case-histories. Review articles.

期刊描述简介:

The Journal of Thermal Biology publishes articles that advance our knowledge on the ways and mechanisms through which temperature affects man and animals. This includes studies of their responses to these effects and on the ecological consequences. Directly relevant to this theme are: • The mechanisms of thermal limitation, heat and cold injury, and the resistance of organisms to extremes of temperature • The mechanisms involved in acclimation, acclimatization and evolutionary adaptation to temperature • Mechanisms underlying the patterns of hibernation, torpor, dormancy, aestivation and diapause • Effects of temperature on reproduction and development, growth, ageing and life-span • Studies on modelling heat transfer between organisms and their environment • The contributions of temperature to effects of climate change on animal species and man • Studies of conservation biology and physiology related to temperature • Behavioural and physiological regulation of body temperature including its pathophysiology and fever • Medical applications of hypo- and hyperthermia

最新论文
  • Expression pattern of bta-mir-2898 miRNA and their correlation with heat shock proteins during summer heat stress among native vs crossbred cattle.

    Earlier studies identified the role of bta-mir-2898 in bovine. Our earlier study identified that, bta-mir-2898 can be over expressed in crossbred cattle during heat stress. Nevertheless the differential expression of bta-mir-2898 among native vs crossbred cattle during summer stress along with it's correlation with different heat shock proteins (HSPs) is not yet studied. In the present context, we studied the differential expression of bta-mir-2898 among Frieswal (Bos indicus x Bos taurus) and Sahiwal (Bos indicus) breeds of cattle during a range of environmental air temperatures and further investigated the correlation of bta-mir-2898 with different HSPs (HSP70, HSP90, HSP60. HSF, HSPB8 and HSP27). It was observed that, at peak air temperature the relative miRNA expression level (p < 0.05) of bta-mir-2898 was 3.4 ± 0.41 and 0.79 ± 0.22 among Frieswal and Sahiwal, respectively. We also observed significant levels (p < 0.05) of mRNA abundance of HSP70, HSP90, HSPB8 and HSP27 among the breeds. In all the cases Sahiwal found to exhibited higher level of HSPs in comparison to Frieswal. Studies revealed that the expression profile of bta-mir-2898 was negatively correlated with the expression of all the HSPs during thermal stress in post anti-mir2898 treated PBMC invitro cultured model originated from both Frieswal and Sahiwal cattle breeds. However, significantly (p < 0.05) higher negative correlations were observed between bta-mir-2898 and HSP70, HSP60 and HSPB8. Present findings highlighted the preliminary role of overexpressed bta-mir-2898 in cattle during thermal stress and its impact on different heat shock proteins.

    被引量:2 发表:1970

  • Differential effect of thermal stress on HSP70 expression, nitric oxide production and cell proliferation among native and crossbred dairy cattle.

    In a tropical country like India, thermal stress is one of the major factors which significantly affects the productivity of dairy cattle. The present study was aimed to identify the effect of heat and cold stress on cell viability, mitogen stimulation indices, nitric oxide production and HSP70 expression in Sahiwal and Holstein crossbred (Frieswal) population in India. The results indicated that the Sahiwal breed can better withstand the effect of heat and cold stress significantly (P<0.05) when compared to the crossbred cattle due to the higher survivability of the Peripheral Blood Mononuclear Cells (PBMCs) and Phytohemagglutinin (PHA-P) mitogen based stimulation indices. The study also revealed the significant differences (P<0.05) in the level of nitric oxide (µM) production amongst the pre and post thermal stressed samples of Sahiwal and Frieswal crossbred samples. Further, the expression of HSP70 was significantly (P<0.05) higher in Sahiwal compared to Frieswal immediately after heat/cold shock to 6h of recovery as indirect ELISA analysis showed gradual rise in the Hsp70 protein concentration (ng/ml) immediately after heat and cold stress (0h) and reached the peak at 6h of recovery. Western blot and immune fluorescent assay results were also corroborated with the findings of indirect ELISA. In Sahiwal cattle the mRNA expression of HSP70 and its protein concentration were higher (P<0.05) during peak summer (44°C) and winter (10°C) as compared to Frieswal cattle. This investigation supports the earlier information on the higher adaptability of indigenous cattle breeds to hot and humid conditions compared to the crossbreds of temperate cattle breeds.

    被引量:17 发表:1970

  • Cool Bands: Wing bands decrease rate of heating, but not equilibrium temperature in Anartia fatima.

    Butterflies regulate their internal thoracic temperature in order to optimize performance activities (e.g. flight, foraging). Previous research has shown that butterfly wings, particularly the innermost portions, play a role in thermoregulation. We investigated to see whether a lightly colored wing band would alter the thermal properties of the banded peacock butterfly (Anartia fatima) with two within subject experiments in a laboratory setting: (1) band color manipulation in which euthanized individuals were heated to thermal equilibrium with the band unaltered and then again with the wing darkened; (2) wing ablation in which individuals already run through experiment 1 were heated to equilibrium two more times; once with the outer portion of the wing including the band removed and then with the entire wing removed. Individuals were spread so that the dorsal surface of the wing was exposed to illumination from a lamp suspended above. Twelve Anartia fatima males were collected in Panama and were run through experiment one. Four individuals were run through experiment two. We found no effect of darkening the band on the internal thoracic equilibrium temperature, but the darkened band did increase the rate of heating. The wing ablation experiment revealed that wing removal lowered the internal thoracic equilibrium temperature but did not affect the heating rate. Therefore we show that butterfly bands may be important in butterfly thermoregulation and we discuss the importance of the wing band on thermoregulatory abilities in Anartia fatima with respect to the butterfly's natural history. We conclude that the wing band may allow butterflies to reduce heat stress induced by their warm environments.

    被引量:3 发表:1970

  • Effect of in vitro zinc supplementation on HSPs expression and Interleukin 10 production in heat treated peripheral blood mononuclear cells of transition Sahiwal and Karan Fries cows.

    The changing climatic scenario with apprehended rise in global temperature is likely to affect the livestock adversely vis-à-vis production and reproduction. This has prompted more focus in addressing the unfavorable effects of thermal stress in livestock system. Presuming that the trace element zinc is indispensible for cellular antioxidant system and immune function, the present study was designed to investigate the effect of zinc treatment on heat stress alleviation and immune modulation in peripheral blood mononuclear cells (PBMC) of indigenous and crossbred transition cows. Twelve cows, six each of Sahiwal and Karan Fries (KF) in their second parity with confirmed pregnancy were selected for the experiment. The blood samples were collected at -21, 0 and +21 days in relation to expected date of calving. The experiment was carried out in vitro after isolating PBMC from whole blood. The 48h cultured PBMC were subjected to assorted levels of exposures viz. 37°C, 42°C to impose heat stress and 42°C+zinc to alleviate heat stress and modulate immunity. The PBMC viability was 86%, 69% and 78%, respectively. The mRNA expression of heat shock proteins (HSP 40, 70 and 90α) and Interleukin-10 (IL-10) production varied between the two breeds vis-à-vis days and levels of exposure. The mRNA expression of HSP40 and HSP70 was significantly (P<0.05) higher in Karan Fries than the Sahiwal cows. Both the breeds showed maximum expression of HSP on the day of parturition, more so in KF than Sahiwal. There was a significant (P<0.05) difference in the HSP mRNA expression at different levels of exposure. Zinc treatment to heat stressed PBMC caused a significant (P<0.05) down regulation of HSP. For immune status, anti-inflammatory cytokine, IL-10 in the culture supernatant was accessed. The IL-10 was significantly (P<0.05) higher in Karan Fries (168.18±14.09pg/ml) than the Sahiwal cows (147.24±11.82pg/ml). The IL-10 concentration was highest on the day of calving. Zinc treatment reduced the IL-10 concentration. From the study, it could be concluded that the zinc supplementation in heat stressed PBMC can ameliorate thermal stress and modulate immune response which can act as a model for reducing heat stress during the periparturient period in tropical livestock.

    被引量:4 发表:1970

  • Behavioural thermoregulation and the relative roles of convection and radiation in a basking butterfly.

    Poikilothermic animals are often reliant on behavioural thermoregulation to elevate core-body temperature above the temperature of their surroundings. Butterflies are able to do this by altering body posture and location while basking, however the specific mechanisms that achieve such regulation vary among species. The role of the wings has been particularly difficult to describe, with uncertainty surrounding whether they are positioned to reduce convective heat loss or to maximise heat gained through radiation. Characterisation of the extent to which these processes affect core-body temperature will provide insights into the way in which a species׳ thermal sensitivity and morphological traits have evolved. We conducted field and laboratory measurements to assess how basking posture affects the core-body temperature of an Australian butterfly, the common brown (Heteronympha merope). We show that, with wings held open, heat lost through convection is reduced while heat gained through radiation is simultaneously maximised. These responses have been incorporated into a biophysical model that accurately predicts the core-body temperature of basking specimens in the field, providing a powerful tool to explore how climate constrains the distribution and abundance of basking butterflies.

    被引量:8 发表:1970

统计分析
是否有问题?您可以直接对期刊官方提问 提问

最近浏览

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读