Radiograph-based rheumatoid arthritis diagnosis via convolutional neural network.
Rheumatoid arthritis (RA) is a severe and common autoimmune disease. Conventional diagnostic methods are often subjective, error-prone, and repetitive works. There is an urgent need for a method to detect RA accurately. Therefore, this study aims to develop an automatic diagnostic system based on deep learning for recognizing and staging RA from radiographs to assist physicians in diagnosing RA quickly and accurately.
We develop a CNN-based fully automated RA diagnostic model, exploring five popular CNN architectures on two clinical applications. The model is trained on a radiograph dataset containing 240 hand radiographs, of which 39 are normal and 201 are RA with five stages. For evaluation, we use 104 hand radiographs, of which 13 are normal and 91 RA with five stages.
The CNN model achieves good performance in RA diagnosis based on hand radiographs. For the RA recognition, all models achieve an AUC above 90% with a sensitivity over 98%. In particular, the AUC of the GoogLeNet-based model is 97.80%, and the sensitivity is 100.0%. For the RA staging, all models achieve over 77% AUC with a sensitivity over 80%. Specifically, the VGG16-based model achieves 83.36% AUC with 92.67% sensitivity.
The presented GoogLeNet-based model and VGG16-based model have the best AUC and sensitivity for RA recognition and staging, respectively. The experimental results demonstrate the feasibility and applicability of CNN in radiograph-based RA diagnosis. Therefore, this model has important clinical significance, especially for resource-limited areas and inexperienced physicians.
Peng Y
,Huang X
,Gan M
,Zhang K
,Chen Y
... -
《-》
RANet: a custom CNN model and quanvolutional neural network for the automated detection of rheumatoid arthritis in hand thermal images.
Rheumatoid arthritis is an autoimmune disease which affects the small joints. Early prediction of RA is necessary for the treatment and management of the disease. The current work presents a deep learning and quantum computing-based automated diagnostic approach for RA in hand thermal imaging. The study's goals are (i) to develop a custom RANet model and compare its performance with the pretrained models and quanvolutional neural network (QNN) to distinguish between the healthy subjects and RA patients, (ii) To validate the performance of the custom model using feature selection method and classification using machine learning (ML) classifiers. The present study developed a custom RANet model and employed pre-trained models such as ResNet101V2, InceptionResNetV2, and DenseNet201 to classify the RA patients and normal subjects. The deep features extracted from the RA Net model are fed into the ML classifiers after the feature selection process. The RANet model, RA Net+ SVM, and QNN model produced an accuracy of 95%, 97% and 93.33% respectively in the classification of healthy groups and RA patients. The developed RANet and QNN models based on thermal imaging could be employed as an accurate automated diagnostic tool to differentiate between the RA and control groups.
Ahalya RK
,Almutairi FM
,Snekhalatha U
,Dhanraj V
,Aslam SM
... -
《Scientific Reports》
Deep feature classification of angiomyolipoma without visible fat and renal cell carcinoma in abdominal contrast-enhanced CT images with texture image patches and hand-crafted feature concatenation.
To develop an automatic deep feature classification (DFC) method for distinguishing benign angiomyolipoma without visible fat (AMLwvf) from malignant clear cell renal cell carcinoma (ccRCC) from abdominal contrast-enhanced computer tomography (CE CT) images.
A dataset including 80 abdominal CT images of 39 AMLwvf and 41 ccRCC patients was used. We proposed a DFC method for differentiating the small renal masses (SRM) into AMLwvf and ccRCC using the combination of hand-crafted and deep features, and machine learning classifiers. First, 71-dimensional hand-crafted features (HCF) of texture and shape were extracted from the SRM contours. Second, 1000-4000-dimensional deep features (DF) were extracted from the ImageNet pretrained deep learning model with the SRM image patches. In DF extraction, we proposed the texture image patches (TIP) to emphasize the texture information inside the mass in DFs and reduce the mass size variability. Finally, the two features were concatenated and the random forest (RF) classifier was trained on these concatenated features to classify the types of SRMs. The proposed method was tested on our dataset using leave-one-out cross-validation and evaluated using accuracy, sensitivity, specificity, positive predictive values (PPV), negative predictive values (NPV), and area under receiver operating characteristics curve (AUC). In experiments, the combinations of four deep learning models, AlexNet, VGGNet, GoogleNet, and ResNet, and four input image patches, including original, masked, mass-size, and texture image patches, were compared and analyzed.
In qualitative evaluation, we observed the change in feature distributions between the proposed and comparative methods using tSNE method. In quantitative evaluation, we evaluated and compared the classification results, and observed that (a) the proposed HCF + DF outperformed HCF-only and DF-only, (b) AlexNet showed generally the best performances among the CNN models, and (c) the proposed TIPs not only achieved the competitive performances among the input patches, but also steady performance regardless of CNN models. As a result, the proposed method achieved the accuracy of 76.6 ± 1.4% for the proposed HCF + DF with AlexNet and TIPs, which improved the accuracy by 6.6%p and 8.3%p compared to HCF-only and DF-only, respectively.
The proposed shape features and TIPs improved the HCFs and DFs, respectively, and the feature concatenation further enhanced the quality of features for differentiating AMLwvf from ccRCC in abdominal CE CT images.
Lee H
,Hong H
,Kim J
,Jung DC
... -
《-》