Validation of Fully Automated Robust Multicriterial Treatment Planning for Head and Neck Cancer IMPT.

来自 PUBMED

作者:

Huiskes MKong WOud MCrama KRasch CBreedveld SHeijmen BAstreinidou E

展开

摘要:

Our purpose was to compare robust intensity modulated proton therapy (IMPT) plans, automatically generated with wish-list-based multicriterial optimization as implemented in Erasmus-iCycle, with manually created robust clinical IMPT plans for patients with head and neck cancer. Thirty-three patients with head and neck cancer were retrospectively included. All patients were previously treated with a manually created IMPT plan with 7000 cGy dose prescription to the primary tumor (clinical target volume [CTV]7000) and 5425 cGy dose prescription to the bilateral elective volumes (CTV5425). Plans had a 4-beam field configuration and were generated with scenario-based robust optimization (21 scenarios, 3-mm setup error, and ±3% density uncertainty for the CTVs). Three clinical plans were used to configure the Erasmus-iCycle wish-list for automated generation of robust IMPT plans for the other 30 included patients, in line with clinical planning requirements. Automatically and manually generated IMPT plans were compared for (robust) target coverage, organ-at-risk (OAR) doses, and normal tissue complication probabilities (NTCP). No manual fine-tuning of automatically generated plans was performed. For all automatically generated plans, voxel-wise minimum D98% values for the CTVs were within clinical constraints and similar to manual plans. All investigated OAR parameters were favorable in the automatically generated plans (all P < .001). Median reductions in mean dose to OARs went up to 667 cGy for the inferior pharyngeal constrictor muscle, and median reductions in D0.03cm3 in serial OARs ranged up to 1795 cGy for the spinal cord surface. The observed lower mean dose in parallel OARs resulted in statistically significant lower NTCP for xerostomia (grade ≥2: 34.4% vs 38.0%; grade ≥3: 9.0% vs 10.2%) and dysphagia (grade ≥2: 11.8% vs 15.0%; grade ≥3: 1.8% vs 2.8%). Erasmus-iCycle was able to produce IMPT dose distributions fully automatically with similar (robust) target coverage and improved OAR doses and NTCPs compared with clinical manual planning, with negligible hands-on planning workload.

收起

展开

DOI:

10.1016/j.ijrobp.2023.12.034

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(160)

参考文献(0)

引证文献(0)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读