Applications of artificial intelligence in the field of air pollution: A bibliometric analysis.

来自 PUBMED

作者:

Guo QRen MWu SSun YWang JWang QMa YSong XChen Y

展开

摘要:

Artificial intelligence (AI) has become widely used in a variety of fields, including disease prediction, environmental monitoring, and pollutant prediction. In recent years, there has also been an increase in the volume of research into the application of AI to air pollution. This study aims to explore the latest trends in the application of AI in the field of air pollution. All literature on the application of AI to air pollution was searched from the Web of Science database. CiteSpace 5.8.R1 was used to analyze countries/regions, institutions, authors, keywords and references cited, and to reveal hot spots and frontiers of AI in atmospheric pollution. Beginning in 1994, publications on AI in air pollution have increased in number, with a surge in research since 2017. The leading country and institution were China (N = 524) and the Chinese Academy of Sciences (N = 58), followed by the United States (N = 455) and Tsinghua University (N = 33), respectively. In addition, the United States (0.24) and the England (0.27) showed a high degree of centrality. Most of the identified articles were published in journals related to environmental science; the most cited journal was Atmospheric Environment, which reached nearly 1,000 citations. There were few collaborations among authors, institutions and countries. The hot topics were machine learning, air pollution and deep learning. The majority of the researchers concentrated on air pollutant concentration prediction, particularly the combined use of AI and environmental science methods, low-cost air quality sensors, indoor air quality, and thermal comfort. Researches in the field of AI and air pollution are expanding rapidly in recent years. The majority of scholars are from China and the United States, and the Chinese Academy of Sciences is the dominant research institution. The United States and the England contribute greatly to the development of the cooperation network. Cooperation among research institutions appears to be suboptimal, and strengthening cooperation could greatly benefit this field of research. The prediction of air pollutant concentrations, particularly PM2.5, low-cost air quality sensors, and thermal comfort are the current research hotspot.

收起

展开

DOI:

10.3389/fpubh.2022.933665

被引量:

2

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(359)

参考文献(46)

引证文献(2)

来源期刊

Frontiers in Public Health

影响因子:6.455

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读