Zinc-biofortified wheat accumulates more cadmium in grains than standard wheat when grown on cadmium-contaminated soil regardless of soil and foliar zinc application.

来自 PUBMED

作者:

Hussain SKhan AMRengel Z

展开

摘要:

Zinc (Zn)-biofortified wheat may contribute to decreasing widespread human Zn deficiency. Such genotypes may also accumulate cadmium (Cd) in grains that would expect to be decreased by Zn application. However, the influence of soil and foliar Zn application on grain Cd accumulation in Zn-biofortified versus standard wheat is unknown. In our experiment, we grew standard (Faisalabad-2008) and Zn-biofortified (Zincol-2016) wheats in pots having uncontaminated (T0) or Cd-spiked (8 mg kg-1) soil. Plants in Cd-amended pots were treated with no Zn (T1), 8 mg Zn kg-1 to soil at sowing (T2), 0.5% w/v ZnSO4·7H2O to foliage at booting and heading (T3), or soil (as in T2) + foliar (as in T3) Zn application (T4). Only in the uncontaminated control, grain yield of Faisalabad-2008 was greater than Zincol-2016. Any Zn application to Zincol-2016 grown in Cd-spiked pots increased grain yield compared with the uncontaminated control. In both cultivars, grain Zn concentration was influenced more by foliar than soil Zn application. However, Zincol-2016 had 6 to 14 mg more Zn kg-1 in grains than Faisalabad-2008 in the comparable treatments. Cadmium exposure (T1 vs. T0) decreased grain yield of only Faisalabad-2008, and decreased grain Zn concentration only in Zincol-2016. Without any Zn application, grain Cd concentration in both cultivars exposed to Cd was above the permissible level (0.20 mg kg-1). Zinc application decreased grain Cd concentration, although it remained above the permissible level in both cultivars except in Faisalabad-2008 when treated with soil + foliar Zn. Foliar Zn application decreased grain Cd concentration more than soil Zn application, and more in Zincol-2016 than Faisalabad-2008. In the comparable Cd-spiked treatments, Zincol-2016 had 73 to 134% higher grain Cd concentration than Faisalabad-2008. The Zn-biofortified genotypes accumulating toxic metals may pose serious health issues. Therefore, future breeding for biofortification should focus on the selective accumulation of Zn.

收起

展开

DOI:

10.1016/j.scitotenv.2018.11.097

被引量:

7

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(788)

参考文献(0)

引证文献(7)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读