Machine learning-aided discovery of T790M-mutant EGFR inhibitor CDDO-Me effectively suppresses non-small cell lung cancer growth.

来自 PUBMED

作者:

Zhou RLiu ZWu TPan XLi TMiao KLi YHu XWu HHemmings AMJiang BZhang ZLiu N

展开

摘要:

Epidermal growth factor receptor (EGFR) T790M mutation often occurs during long durational erlotinib treatment of non-small cell lung cancer (NSCLC) patients, leading to drug resistance and disease progression. Identification of new selective EGFR-T790M inhibitors has proven challenging through traditional screening platforms. With great advances in computer algorithms, machine learning improved the screening rates of molecules at full chemical spaces, and these molecules will present higher biological activity and targeting efficiency. An integrated machine learning approach, integrated by Bayesian inference, was employed to screen a commercial dataset of 70,413 molecules, identifying candidates that selectively and efficiently bind with EGFR harboring T790M mutation. In vitro cellular assays and molecular dynamic simulations was used for validation. EGFR knockout cell line was generated for cross-validation. In vivo xenograft moues model was constructed to investigate the antitumor efficacy of CDDO-Me. Our virtual screening and subsequent in vitro testing successfully identified CDDO-Me, an oleanolic acid derivative with anti-inflammatory activity, as a potent inhibitor of NSCLC cancer cells harboring the EGFR-T790M mutation. Cellular thermal shift assay and molecular dynamic simulation validated the selective binding of CDDO-Me to T790M-mutant EGFR. Further experimental results revealed that CDDO-Me induced cellular apoptosis and caused cell cycle arrest through inhibiting the PI3K-Akt-mTOR axis by directly targeting EGFR protein, cross-validated by sgEGFR silencing in H1975 cells. Additionally, CDDO-Me could dose-depended suppress the tumor growth in a H1975 xenograft mouse model. CDDO-Me induced apoptosis and caused cell cycle arrest by inhibiting the PI3K-Akt-mTOR pathway, directly targeting the EGFR protein. In vivo studies in a H1975 xenograft mouse model demonstrated dose-dependent suppression of tumor growth. Our work highlights the application of machine learning-aided drug screening and provides a promising lead compound to conquer the drug resistance of NSCLC.

收起

展开

DOI:

10.1186/s12964-024-01954-7

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(100)

参考文献(0)

引证文献(0)

来源期刊

Cell Communication and Signaling

影响因子:7.517

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读