Utility of Anthropometric Indexes for Detecting Metabolic Syndrome in Resource-Limited Regions of Northwestern China: Cross-Sectional Study.

来自 PUBMED

作者:

Yang DMa LCheng YShi HLiu YShi C

展开

摘要:

Anthropometric indexes offer a practical approach to identifying metabolic syndrome (MetS) and its components. However, there is a scarcity of research on anthropometric indexes tailored to predict MetS in populations from resource-limited regions. This study aimed to examine the association between 8 easy-to-collect anthropometric indexes and MetS, and determine the most appropriate indexes to identify the presence of MetS for adults in resource-limited areas. A total of 10,520 participants aged 18-85 years from Ningxia Hui Autonomous Region, China, were included in this cross-sectional study. Participants were recruited through a stratified sampling approach from January 1, 2020, to December 31, 2021. MetS was defined using the International Diabetes Federation (IDF) criteria. Eight anthropometric indexes were examined, including BMI, waist-to-height ratio (WHtR), weight-adjusted waist index (WWI), conicity index, a body shape index (ABSI), lipid accumulation products (LAP), visceral obesity index (VAI), and the triglyceride-glucose (TyG) index. Logistic regression analysis and restricted cubic splines (RCSs) were applied to identify the association between the anthropometric indexes. The receiver operating characteristic curve and the area under the curve (AUC) were analyzed to identify and compare the discriminative power of anthropometric indexes in identifying MetS. The Youden index was used to determine a range of optimal diagnostic thresholds. Logistic regression analysis was applied to identify the association between the anthropometric indexes. A total of 3324 (31.60%) participants were diagnosed with MetS. After adjusting for age, ethnicity, current residence, education level, habitual alcohol consumption, and tobacco use, all the 8 indexes were positively correlated with the risks of MetS (P<.05). LAP presented the highest adjusted odds ratios (adjOR 35.69, 95% CI 34.59-36.80), followed by WHtR (adjOR 29.27, 95% CI 28.00-30.55), conicity index (adjOR 11.58, 95% CI 10.95-12.22), TyG index (adjOR 5.53, 95% CI 5.07-6.04), BMI (adjOR 3.88, 95% CI 3.71-4.05), WWI (adjOR 3.23, 95% CI 3.02-3.46), VAI (adjOR 2.11, 95% CI 2.02-2.20), and ABSI (adjOR 1.71, 95% CI 1.62-1.80). Significantly nonlinear associations between the 8 indexes and the risk of MetS (all Pnonlinear<.001) were observed in the RCSs. WHtR was the strongest predictor of MetS for males (AUC 0.91, 95% CI 0.90-0.92; optimal cutoff 0.53). LAP were the strongest predictor of MetS for females (AUC 0.89, 95% CI 0.89-0.90; optimal cutoff 28.67). Statistical differences were present between WHtR and all other 7 anthropometric indexes among males and overall (all P<.05). In females, the AUC values between LAP and BMI, WWI, ABSI, conicity index, VAI, and TyG index were significantly different (P<.001). No statistical difference was observed between LAP and WHtR among females. According to 8 anthropometric and lipid-related indices, it is suggested that WHtR and LAP are the most appropriate indexes for identifying the presence of MetS in resource-limited areas.

收起

展开

DOI:

10.2196/57799

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(100)

参考文献(0)

引证文献(0)

来源期刊

JMIR Public Health and Surveillance

影响因子:14.542

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读