Safety and Efficacy of Atogepant for the Preventive Treatment of Migraines in Adults: A Systematic Review and Meta-Analysis.


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(100)
参考文献(0)
引证文献(0)
-
Alrasheed AS ,Almaqboul TM ,Alshamrani RA ,AlMohish NM ,Alabdali MM ... - 《Journal of Clinical Medicine》
被引量: - 发表:1970年 -
About 20-30% of older adults (≥ 65 years old) experience one or more falls each year, and falls are associated with substantial burden to the health care system, individuals, and families from resulting injuries, fractures, and reduced functioning and quality of life. Many interventions for preventing falls have been studied, and their effectiveness, factors relevant to their implementation, and patient preferences may determine which interventions to use in primary care. The aim of this set of reviews was to inform recommendations by the Canadian Task Force on Preventive Health Care (task force) on fall prevention interventions. We undertook three systematic reviews to address questions about the following: (i) the benefits and harms of interventions, (ii) how patients weigh the potential outcomes (outcome valuation), and (iii) patient preferences for different types of interventions, and their attributes, shown to offer benefit (intervention preferences). We searched four databases for benefits and harms (MEDLINE, Embase, AgeLine, CENTRAL, to August 25, 2023) and three for outcome valuation and intervention preferences (MEDLINE, PsycINFO, CINAHL, to June 9, 2023). For benefits and harms, we relied heavily on a previous review for studies published until 2016. We also searched trial registries, references of included studies, and recent reviews. Two reviewers independently screened studies. The population of interest was community-dwelling adults ≥ 65 years old. We did not limit eligibility by participant fall history. The task force rated several outcomes, decided on their eligibility, and provided input on the effect thresholds to apply for each outcome (fallers, falls, injurious fallers, fractures, hip fractures, functional status, health-related quality of life, long-term care admissions, adverse effects, serious adverse effects). For benefits and harms, we included a broad range of non-pharmacological interventions relevant to primary care. Although usual care was the main comparator of interest, we included studies comparing interventions head-to-head and conducted a network meta-analysis (NMAs) for each outcome, enabling analysis of interventions lacking direct comparisons to usual care. For benefits and harms, we included randomized controlled trials with a minimum 3-month follow-up and reporting on one of our fall outcomes (fallers, falls, injurious fallers); for the other questions, we preferred quantitative data but considered qualitative findings to fill gaps in evidence. No date limits were applied for benefits and harms, whereas for outcome valuation and intervention preferences we included studies published in 2000 or later. All data were extracted by one trained reviewer and verified for accuracy and completeness. For benefits and harms, we relied on the previous review team's risk-of-bias assessments for benefit outcomes, but otherwise, two reviewers independently assessed the risk of bias (within and across study). For the other questions, one reviewer verified another's assessments. Consensus was used, with adjudication by a lead author when necessary. A coding framework, modified from the ProFANE taxonomy, classified interventions and their attributes (e.g., supervision, delivery format, duration/intensity). For benefit outcomes, we employed random-effects NMA using a frequentist approach and a consistency model. Transitivity and coherence were assessed using meta-regressions and global and local coherence tests, as well as through graphical display and descriptive data on the composition of the nodes with respect to major pre-planned effect modifiers. We assessed heterogeneity using prediction intervals. For intervention-related adverse effects, we pooled proportions except for vitamin D for which we considered data in the control groups and undertook random-effects pairwise meta-analysis using a relative risk (any adverse effects) or risk difference (serious adverse effects). For outcome valuation, we pooled disutilities (representing the impact of a negative event, e.g. fall, on one's usual quality of life, with 0 = no impact and 1 = death and ~ 0.05 indicating important disutility) from the EQ-5D utility measurement using the inverse variance method and a random-effects model and explored heterogeneity. When studies only reported other data, we compared the findings with our main analysis. For intervention preferences, we used a coding schema identifying whether there were strong, clear, no, or variable preferences within, and then across, studies. We assessed the certainty of evidence for each outcome using CINeMA for benefit outcomes and GRADE for all other outcomes. A total of 290 studies were included across the reviews, with two studies included in multiple questions. For benefits and harms, we included 219 trials reporting on 167,864 participants and created 59 interventions (nodes). Transitivity and coherence were assessed as adequate. Across eight NMAs, the number of contributing trials ranged between 19 and 173, and the number of interventions ranged from 19 to 57. Approximately, half of the interventions in each network had at least low certainty for benefit. The fallers outcome had the highest number of interventions with moderate certainty for benefit (18/57). For the non-fall outcomes (fractures, hip fracture, long-term care [LTC] admission, functional status, health-related quality of life), many interventions had very low certainty evidence, often from lack of data. We prioritized findings from 21 interventions where there was moderate certainty for at least some benefit. Fourteen of these had a focus on exercise, the majority being supervised (for > 2 sessions) and of long duration (> 3 months), and with balance/resistance and group Tai Chi interventions generally having the most outcomes with at least low certainty for benefit. None of the interventions having moderate certainty evidence focused on walking. Whole-body vibration or home-hazard assessment (HHA) plus exercise provided to everyone showed moderate certainty for some benefit. No multifactorial intervention alone showed moderate certainty for any benefit. Six interventions only had very-low certainty evidence for the benefit outcomes. Two interventions had moderate certainty of harmful effects for at least one benefit outcome, though the populations across studies were at high risk for falls. Vitamin D and most single-component exercise interventions are probably associated with minimal adverse effects. Some uncertainty exists about possible adverse effects from other interventions. For outcome valuation, we included 44 studies of which 34 reported EQ-5D disutilities. Admission to long-term care had the highest disutility (1.0), but the evidence was rated as low certainty. Both fall-related hip (moderate certainty) and non-hip (low certainty) fracture may result in substantial disutility (0.53 and 0.57) in the first 3 months after injury. Disutility for both hip and non-hip fractures is probably lower 12 months after injury (0.16 and 0.19, with high and moderate certainty, respectively) compared to within the first 3 months. No study measured the disutility of an injurious fall. Fractures are probably more important than either falls (0.09 over 12 months) or functional status (0.12). Functional status may be somewhat more important than falls. For intervention preferences, 29 studies (9 qualitative) reported on 17 comparisons among single-component interventions showing benefit. Exercise interventions focusing on balance and/or resistance training appear to be clearly preferred over Tai Chi and other forms of exercise (e.g., yoga, aerobic). For exercise programs in general, there is probably variability among people in whether they prefer group or individual delivery, though there was high certainty that individual was preferred over group delivery of balance/resistance programs. Balance/resistance exercise may be preferred over education, though the evidence was low certainty. There was low certainty for a slight preference for education over cognitive-behavioral therapy, and group education may be preferred over individual education. To prevent falls among community-dwelling older adults, evidence is most certain for benefit, at least over 1-2 years, from supervised, long-duration balance/resistance and group Tai Chi interventions, whole-body vibration, high-intensity/dose education or cognitive-behavioral therapy, and interventions of comprehensive multifactorial assessment with targeted treatment plus HHA, HHA plus exercise, or education provided to everyone. Adding other interventions to exercise does not appear to substantially increase benefits. Overall, effects appear most applicable to those with elevated fall risk. Choice among effective interventions that are available may best depend on individual patient preferences, though when implementing new balance/resistance programs delivering individual over group sessions when feasible may be most acceptable. Data on more patient-important outcomes including fall-related fractures and adverse effects would be beneficial, as would studies focusing on equity-deserving populations and on programs delivered virtually. Not registered.
Pillay J ,Gaudet LA ,Saba S ,Vandermeer B ,Ashiq AR ,Wingert A ,Hartling L ... - 《Systematic Reviews》
被引量: - 发表:1970年 -
Galantamine for dementia due to Alzheimer's disease and mild cognitive impairment.
Dementia leads to progressive cognitive decline, and represents a significant health and societal burden. Its prevalence is growing, with Alzheimer's disease as the leading cause. There is no cure for Alzheimer's disease, but there are regulatory-approved pharmacological interventions, such as galantamine, for symptomatic relief. This review updates the 2006 version. To assess the clinical effects, including adverse effects, of galantamine in people with probable or possible Alzheimer's disease or mild cognitive impairment, and to investigate potential moderators of effect. We systematically searched the Cochrane Dementia and Cognitive Improvement Group's Specialised Register on 14 December 2022 using the term 'galantamine'. The Register contains records of clinical trials identified from major electronic databases (including CENTRAL, MEDLINE, and Embase), trial registries, grey literature sources, and conference proceedings. We manually searched reference lists and collected information from US Food and Drug Administration documents and unpublished trial reports. We imposed no language restrictions. We included double-blind, parallel-group, randomised controlled trials comparing oral galantamine with placebo for a treatment duration exceeding four weeks in people with dementia due to Alzheimer's disease or with mild cognitive impairment. Working independently, two review authors selected studies for inclusion, assessed their quality, and extracted data. Outcomes of interest included cognitive function, change in global function, activities of daily living, functional disability, behavioural function, and adverse events. We used a fixed-effect model for meta-analytic synthesis, and presented results as Peto odds ratios (OR) or weighted mean differences (MD) with 95% confidence intervals. We used Cochrane's original risk of bias tool (RoB 1) to assess the risk of bias in the included studies. We included 21 studies with a total of 10,990 participants. The average age of participants was 74 years, and 37% were male. The studies' durations ranged from eight weeks to two years, with 24 weeks being the most common duration. One newly included study assessed the effects of galantamine at two years, and another newly included study involved participants with severe Alzheimer's disease. Nineteen studies with 10,497 participants contributed data to the meta-analysis. All studies had low to unclear risk of bias for randomisation, allocation concealment, and blinding. We judged four studies to be at high risk of bias due to attrition and two due to selective outcome reporting. Galantamine for dementia due to Alzheimer's disease We summarise only the results for galantamine given at 8 to 12 mg twice daily (total galantamine 16 mg to 24 mg/day), assessed at six months. See the full review for results of other dosing regimens and assessment time points. There is high-certainty evidence that, compared to placebo, galantamine improves: cognitive function, as assessed with the Alzheimer's Disease Assessment Scale - Cognitive Subscale (ADAS-cog) (MD-2.86, 95% CI -3.29 to -2.43; 6 studies, 3049 participants; minimum clinically important effect (MCID) = 2.6- to 4-point change); functional disability, as assessed with the Disability Assessment for Dementia (DAD) scale (MD 2.12, 95% CI 0.75 to 3.49; 3 studies, 1275 participants); and behavioural function, as assessed with the Neuropsychiatric Inventory (NPI) (MD -1.63, 95% CI -3.07 to -0.20; 2 studies, 1043 participants) at six months. Galantamine may improve global function at six months, as assessed with the Clinician's Interview-Based Impression of Change plus Caregiver Input (CIBIC-plus) (OR 1.58, 95% CI 1.36 to 1.84; 6 studies, 3002 participants; low-certainty evidence). Participants who received galantamine were more likely than placebo-treated participants to discontinue prematurely (22.7% versus 17.2%) (OR 1.41, 95% CI 1.19 to 1.68; 6 studies, 3336 participants; high-certainty evidence), and experience nausea (20.9% versus 8.4%) (OR 2.89, 95% CI 2.40 to 3.49; 7 studies, 3616 participants; high-certainty evidence) during the studies. Galantamine reduced death rates at six months: 1.3% of participants in the galantamine groups had died compared to 2.3% in the placebo groups (OR 0.56, 95% CI 0.33 to 0.96; 6 studies, 3493 participants; high-certainty evidence). Galantamine for mild cognitive impairment We summarise results, assessed at two years, from two studies that gave participants galantamine at 8 to 12 mg twice daily (total galantamine 16 mg to 24 mg/day). Compared to placebo, galantamine may not improve cognitive function, as assessed with the expanded ADAS-cog for mild cognitive impairment (MD -0.21, 95% CI -0.78 to 0.37; 2 studies, 1901 participants; low-certainty evidence) or activities of daily living, assessed with the Alzheimer's Disease Cooperative Study - Activities of Daily Living scale for mild cognitive impairment (MD 0.30, 95% CI -0.26 to 0.86; 2 studies, 1901 participants; low-certainty evidence). Participants who received galantamine were probably more likely to discontinue prematurely than placebo-treated participants (40.7% versus 28.6%) (OR 1.71, 95% CI 1.42 to 2.05; 2 studies, 2057 participants) and to experience nausea (29.4% versus 10.7%) (OR 3.49, 95% CI 2.75 to 4.44; 2 studies, 2057 participants), both with moderate-certainty evidence. Galantamine may not reduce death rates at 24 months compared to placebo (0.5% versus 0.1%) (OR 5.03, 95% CI 0.87 to 29.10; 2 studies, 2057 participants; low-certainty evidence). Results from subgroup analysis and meta-regression suggest that an imbalance in discontinuation rates between galantamine and placebo groups, together with the use of the 'last observation carried forward' approach to outcome assessment, may potentially bias cognitive outcomes in favour of galantamine. Compared to placebo, galantamine (when given at a total dose of 16 mg to 24 mg/day) slows the decline in cognitive function, functional ability, and behaviour at six months in people with dementia due to Alzheimer's disease. Galantamine probably also slows declines in global function at six months. The changes observed in cognition, assessed with the ADAS-cog scale, were clinically meaningful. Gastrointestinal-related adverse events are the primary concerns associated with galantamine use in people with dementia, which may limit its tolerability. Although death rates were generally low, participants in the galantamine groups had a reduced risk of death compared to those in the placebo groups. There is no evidence to support the use of galantamine in people with mild cognitive impairment.
Lim AWY ,Schneider L ,Loy C 《Cochrane Database of Systematic Reviews》
被引量: - 发表:1970年 -
Treatments for intractable constipation in childhood.
Constipation that is prolonged and does not resolve with conventional therapeutic measures is called intractable constipation. The treatment of intractable constipation is challenging, involving pharmacological or non-pharmacological therapies, as well as surgical approaches. Unresolved constipation can negatively impact quality of life, with additional implications for health systems. Consequently, there is an urgent need to identify treatments that are efficacious and safe. To evaluate the efficacy and safety of treatments used for intractable constipation in children. We searched CENTRAL, MEDLINE, Embase, and two trials registers up to 23 June 2023. We also searched reference lists of included studies for relevant studies. We included randomised controlled trials (RCTs) comparing any pharmacological, non-pharmacological, or surgical treatment to placebo or another active comparator, in participants aged between 0 and 18 years with functional constipation who had not responded to conventional medical therapy. We used standard Cochrane methods. Our primary outcomes were symptom resolution, frequency of defecation, treatment success, and adverse events; secondary outcomes were stool consistency, painful defecation, quality of life, faecal incontinence frequency, abdominal pain, hospital admission for disimpaction, and school absence. We used GRADE to assess the certainty of evidence for each primary outcome. This review included 10 RCTs with 1278 children who had intractable constipation. We assessed one study as at low risk of bias across all domains. There were serious concerns about risk of bias in six studies. One study compared the injection of 160 units botulinum toxin A (n = 44) to unspecified oral stool softeners (n = 44). We are very uncertain whether botulinum toxin A injection improves treatment success (risk ratio (RR) 37.00, 95% confidence interval (CI) 5.31 to 257.94; very low certainty evidence, downgraded due to serious concerns with risk of bias and imprecision). Frequency of defecation was reported only for the botulinum toxin A injection group (mean interval of 2.6 days). The study reported no data for the other primary outcomes. One study compared erythromycin estolate (n = 6) to placebo (n = 8). The only primary outcome reported was adverse events, which were 0 in both groups. The evidence is of very low certainty due to concerns with risk of bias and serious imprecision. One study compared 12 or 24 μg oral lubiprostone (n = 404) twice a day to placebo (n = 202) over 12 weeks. There may be little to no difference in treatment success (RR 1.29, 95% CI 0.87 to 1.92; low certainty evidence). We also found that lubiprostone probably results in little to no difference in adverse events (RR 1.05, 95% CI 0.91 to 1.21; moderate certainty evidence). The study reported no data for the other primary outcomes. One study compared three-weekly rectal sodium dioctyl sulfosuccinate and sorbitol enemas (n = 51) to 0.5 g/kg/day polyethylene glycol laxatives (n = 51) over a 52-week period. We are very uncertain whether rectal sodium dioctyl sulfosuccinate and sorbitol enemas improve treatment success (RR 1.33, 95% CI 0.83 to 2.14; very low certainty evidence, downgraded due to serious concerns with risk of bias and imprecision). Results of defecation frequency per week was reported only as modelled means using a linear mixed model. The study reported no data for the other primary outcomes. One study compared biofeedback therapy (n = 12) to no intervention (n = 12). We are very uncertain whether biofeedback therapy improves symptom resolution (RR 2.50, 95% CI 1.08 to 5.79; very low certainty evidence, downgraded due to serious concerns with risk of bias and imprecision). The study reported no data for the other primary outcomes. One study compared 20 minutes of intrarectal electromotive botulinum toxin A using 2800 Hz frequency and botulinum toxin A dose 10 international units/kg (n = 30) to 10 international units/kg botulinum toxin A injection (n = 30). We are very uncertain whether intrarectal electromotive botulinum toxin A improves symptom resolution (RR 0.96, 95% CI 0.76 to 1.22; very low certainty evidence) or if it increases the frequency of defecation (mean difference (MD) 0.00, 95% CI -1.87 to 1.87; very low certainty evidence). We are also very uncertain whether intrarectal electromotive botulinum toxin A has an improved safety profile (RR 0.20, 95% CI 0.01 to 4.00; very low certainty evidence). The evidence for these results is of very low certainty due to serious concerns with risk of bias and imprecision. The study did not report data on treatment success. One study compared the injection of 60 units botulinum toxin A (n = 21) to myectomy of the internal anal sphincter (n = 21). We are very uncertain whether botulinum toxin A injection improves treatment success (RR 1.00, 95% CI 0.75 to 1.34; very low certainty evidence). No adverse events were recorded. The study reported no data for the other primary outcomes. One study compared 0.04 mg/kg oral prucalopride (n = 107) once daily to placebo (n = 108) over eight weeks. Oral prucalopride probably results in little or no difference in defecation frequency (MD 0.50, 95% CI -0.06 to 1.06; moderate certainty evidence); treatment success (RR 0.96, 95% CI 0.53 to 1.72; moderate certainty evidence); and adverse events (RR 1.15, 95% CI 0.94 to 1.39; moderate certainty evidence). The study did not report data on symptom resolution. One study compared transcutaneous electrical stimulation to sham stimulation, and another study compared dietitian-prescribed Mediterranean diet with written instructions versus written instructions. These studies did not report any of our predefined primary outcomes. We identified low to moderate certainty evidence that oral lubiprostone may result in little to no difference in treatment success and adverse events compared to placebo. Based on moderate certainty evidence, there is probably little or no difference between oral prucalopride and placebo in defecation frequency, treatment success, or adverse events. For all other comparisons, the certainty of the evidence for our predefined primary outcomes is very low due to serious concerns with study limitations and imprecision. Consequently, no robust conclusions could be drawn.
Gordon M ,Grafton-Clarke C ,Rajindrajith S ,Benninga MA ,Sinopoulou V ,Akobeng AK ... - 《Cochrane Database of Systematic Reviews》
被引量: - 发表:1970年 -
Antioxidants for female subfertility.
M.G. Showell, R. Mackenzie‐Proctor, V. Jordan, and R.J. Hart, “Antioxidants for Female Subfertility,” Cochrane Database of Systematic Reviews, no. 8 (2020): CD007807, https://doi.org/10.1002/14651858.CD007807.pub4 This Editorial Note is for the above article, published online on August 27, 2020, in Cochrane Library (cochranelibrary.com), and has been issued by the Publisher, John Wiley & Sons Ltd, in agreement with Cochrane. The Editorial note has been agreed due to concerns discovered by the Cochrane managing editor regarding the retraction of six studies in the Review (Badawy et al. 2006, 10.1016/j.fertnstert.2006.02.097; El Refaeey et al. 2014, 10.1016/j.rbmo.2014.03.011; El Sharkwy & Abd El Aziz 2019a, https://doi.org/10.1002/ijgo.12902; Gerli et al. 2007, https://doi.org/10.26355/eurrev_202309_33752, full text: https://europepmc.org/article/MED/18074942; Ismail et al. 2014, http://dx.doi.org/10.1016/j.ejogrb.2014.06.008; Hashemi et al. 2017, https://doi.org/10.1080/14767058.2017.1372413). In addition, expressions of concern have been published for two studies (Jamilian et al. 2018, https://doi.org/10.1007/s12011-017-1236-3; Zadeh Modarres 2018, https://doi.org/10.1007/s12011-017-1148-2). The retracted studies will be moved to the Excluded Studies table, and their impact on the review findings will be investigated and acted on accordingly in a future update. Initial checks indicate that removal of the six retracted studies did not make an appreciable difference to the results. Likewise, the studies for which Expressions of Concern were issued will be moved to the Awaiting classification table; they did not report any review outcomes, so removal will have no impact on the review findings. A couple may be considered to have fertility problems if they have been trying to conceive for over a year with no success. This may affect up to a quarter of all couples planning a child. It is estimated that for 40% to 50% of couples, subfertility may result from factors affecting women. Antioxidants are thought to reduce the oxidative stress brought on by these conditions. Currently, limited evidence suggests that antioxidants improve fertility, and trials have explored this area with varied results. This review assesses the evidence for the effectiveness of different antioxidants in female subfertility. To determine whether supplementary oral antioxidants compared with placebo, no treatment/standard treatment or another antioxidant improve fertility outcomes for subfertile women. We searched the following databases (from their inception to September 2019), with no language or date restriction: Cochrane Gynaecology and Fertility Group (CGFG) specialised register, CENTRAL, MEDLINE, Embase, PsycINFO, CINAHL and AMED. We checked reference lists of relevant studies and searched the trial registers. We included randomised controlled trials (RCTs) that compared any type, dose or combination of oral antioxidant supplement with placebo, no treatment or treatment with another antioxidant, among women attending a reproductive clinic. We excluded trials comparing antioxidants with fertility drugs alone and trials that only included fertile women attending a fertility clinic because of male partner infertility. We used standard methodological procedures expected by Cochrane. The primary review outcome was live birth; secondary outcomes included clinical pregnancy rates and adverse events. We included 63 trials involving 7760 women. Investigators compared oral antioxidants, including: combinations of antioxidants, N-acetylcysteine, melatonin, L-arginine, myo-inositol, carnitine, selenium, vitamin E, vitamin B complex, vitamin C, vitamin D+calcium, CoQ10, and omega-3-polyunsaturated fatty acids versus placebo, no treatment/standard treatment or another antioxidant. Only 27 of the 63 included trials reported funding sources. Due to the very low-quality of the evidence we are uncertain whether antioxidants improve live birth rate compared with placebo or no treatment/standard treatment (odds ratio (OR) 1.81, 95% confidence interval (CI) 1.36 to 2.43; P < 0.001, I2 = 29%; 13 RCTs, 1227 women). This suggests that among subfertile women with an expected live birth rate of 19%, the rate among women using antioxidants would be between 24% and 36%. Low-quality evidence suggests that antioxidants may improve clinical pregnancy rate compared with placebo or no treatment/standard treatment (OR 1.65, 95% CI 1.43 to 1.89; P < 0.001, I2 = 63%; 35 RCTs, 5165 women). This suggests that among subfertile women with an expected clinical pregnancy rate of 19%, the rate among women using antioxidants would be between 25% and 30%. Heterogeneity was moderately high. Overall 28 trials reported on various adverse events in the meta-analysis. The evidence suggests that the use of antioxidants makes no difference between the groups in rates of miscarriage (OR 1.13, 95% CI 0.82 to 1.55; P = 0.46, I2 = 0%; 24 RCTs, 3229 women; low-quality evidence). There was also no evidence of a difference between the groups in rates of multiple pregnancy (OR 1.00, 95% CI 0.63 to 1.56; P = 0.99, I2 = 0%; 9 RCTs, 1886 women; low-quality evidence). There was also no evidence of a difference between the groups in rates of gastrointestinal disturbances (OR 1.55, 95% CI 0.47 to 5.10; P = 0.47, I2 = 0%; 3 RCTs, 343 women; low-quality evidence). Low-quality evidence showed that there was also no difference between the groups in rates of ectopic pregnancy (OR 1.40, 95% CI 0.27 to 7.20; P = 0.69, I2 = 0%; 4 RCTs, 404 women). In the antioxidant versus antioxidant comparison, low-quality evidence shows no difference in a lower dose of melatonin being associated with an increased live-birth rate compared with higher-dose melatonin (OR 0.94, 95% CI 0.41 to 2.15; P = 0.89, I2 = 0%; 2 RCTs, 140 women). This suggests that among subfertile women with an expected live-birth rate of 24%, the rate among women using a lower dose of melatonin compared to a higher dose would be between 12% and 40%. Similarly with clinical pregnancy, there was no evidence of a difference between the groups in rates between a lower and a higher dose of melatonin (OR 0.94, 95% CI 0.41 to 2.15; P = 0.89, I2 = 0%; 2 RCTs, 140 women). Three trials reported on miscarriage in the antioxidant versus antioxidant comparison (two used doses of melatonin and one compared N-acetylcysteine versus L-carnitine). There were no miscarriages in either melatonin trial. Multiple pregnancy and gastrointestinal disturbances were not reported, and ectopic pregnancy was reported by only one trial, with no events. The study comparing N-acetylcysteine with L-carnitine did not report live birth rate. Very low-quality evidence shows no evidence of a difference in clinical pregnancy (OR 0.81, 95% CI 0.33 to 2.00; 1 RCT, 164 women; low-quality evidence). Low quality evidence shows no difference in miscarriage (OR 1.54, 95% CI 0.42 to 5.67; 1 RCT, 164 women; low-quality evidence). The study did not report multiple pregnancy, gastrointestinal disturbances or ectopic pregnancy. The overall quality of evidence was limited by serious risk of bias associated with poor reporting of methods, imprecision and inconsistency. In this review, there was low- to very low-quality evidence to show that taking an antioxidant may benefit subfertile women. Overall, there is no evidence of increased risk of miscarriage, multiple births, gastrointestinal effects or ectopic pregnancies, but evidence was of very low quality. At this time, there is limited evidence in support of supplemental oral antioxidants for subfertile women.
Showell MG ,Mackenzie-Proctor R ,Jordan V ,Hart RJ ... - 《Cochrane Database of Systematic Reviews》
被引量: 50 发表:1970年
加载更多
加载更多
加载更多