-
Treatments for intractable constipation in childhood.
Constipation that is prolonged and does not resolve with conventional therapeutic measures is called intractable constipation. The treatment of intractable constipation is challenging, involving pharmacological or non-pharmacological therapies, as well as surgical approaches. Unresolved constipation can negatively impact quality of life, with additional implications for health systems. Consequently, there is an urgent need to identify treatments that are efficacious and safe.
To evaluate the efficacy and safety of treatments used for intractable constipation in children.
We searched CENTRAL, MEDLINE, Embase, and two trials registers up to 23 June 2023. We also searched reference lists of included studies for relevant studies.
We included randomised controlled trials (RCTs) comparing any pharmacological, non-pharmacological, or surgical treatment to placebo or another active comparator, in participants aged between 0 and 18 years with functional constipation who had not responded to conventional medical therapy.
We used standard Cochrane methods. Our primary outcomes were symptom resolution, frequency of defecation, treatment success, and adverse events; secondary outcomes were stool consistency, painful defecation, quality of life, faecal incontinence frequency, abdominal pain, hospital admission for disimpaction, and school absence. We used GRADE to assess the certainty of evidence for each primary outcome.
This review included 10 RCTs with 1278 children who had intractable constipation. We assessed one study as at low risk of bias across all domains. There were serious concerns about risk of bias in six studies. One study compared the injection of 160 units botulinum toxin A (n = 44) to unspecified oral stool softeners (n = 44). We are very uncertain whether botulinum toxin A injection improves treatment success (risk ratio (RR) 37.00, 95% confidence interval (CI) 5.31 to 257.94; very low certainty evidence, downgraded due to serious concerns with risk of bias and imprecision). Frequency of defecation was reported only for the botulinum toxin A injection group (mean interval of 2.6 days). The study reported no data for the other primary outcomes. One study compared erythromycin estolate (n = 6) to placebo (n = 8). The only primary outcome reported was adverse events, which were 0 in both groups. The evidence is of very low certainty due to concerns with risk of bias and serious imprecision. One study compared 12 or 24 μg oral lubiprostone (n = 404) twice a day to placebo (n = 202) over 12 weeks. There may be little to no difference in treatment success (RR 1.29, 95% CI 0.87 to 1.92; low certainty evidence). We also found that lubiprostone probably results in little to no difference in adverse events (RR 1.05, 95% CI 0.91 to 1.21; moderate certainty evidence). The study reported no data for the other primary outcomes. One study compared three-weekly rectal sodium dioctyl sulfosuccinate and sorbitol enemas (n = 51) to 0.5 g/kg/day polyethylene glycol laxatives (n = 51) over a 52-week period. We are very uncertain whether rectal sodium dioctyl sulfosuccinate and sorbitol enemas improve treatment success (RR 1.33, 95% CI 0.83 to 2.14; very low certainty evidence, downgraded due to serious concerns with risk of bias and imprecision). Results of defecation frequency per week was reported only as modelled means using a linear mixed model. The study reported no data for the other primary outcomes. One study compared biofeedback therapy (n = 12) to no intervention (n = 12). We are very uncertain whether biofeedback therapy improves symptom resolution (RR 2.50, 95% CI 1.08 to 5.79; very low certainty evidence, downgraded due to serious concerns with risk of bias and imprecision). The study reported no data for the other primary outcomes. One study compared 20 minutes of intrarectal electromotive botulinum toxin A using 2800 Hz frequency and botulinum toxin A dose 10 international units/kg (n = 30) to 10 international units/kg botulinum toxin A injection (n = 30). We are very uncertain whether intrarectal electromotive botulinum toxin A improves symptom resolution (RR 0.96, 95% CI 0.76 to 1.22; very low certainty evidence) or if it increases the frequency of defecation (mean difference (MD) 0.00, 95% CI -1.87 to 1.87; very low certainty evidence). We are also very uncertain whether intrarectal electromotive botulinum toxin A has an improved safety profile (RR 0.20, 95% CI 0.01 to 4.00; very low certainty evidence). The evidence for these results is of very low certainty due to serious concerns with risk of bias and imprecision. The study did not report data on treatment success. One study compared the injection of 60 units botulinum toxin A (n = 21) to myectomy of the internal anal sphincter (n = 21). We are very uncertain whether botulinum toxin A injection improves treatment success (RR 1.00, 95% CI 0.75 to 1.34; very low certainty evidence). No adverse events were recorded. The study reported no data for the other primary outcomes. One study compared 0.04 mg/kg oral prucalopride (n = 107) once daily to placebo (n = 108) over eight weeks. Oral prucalopride probably results in little or no difference in defecation frequency (MD 0.50, 95% CI -0.06 to 1.06; moderate certainty evidence); treatment success (RR 0.96, 95% CI 0.53 to 1.72; moderate certainty evidence); and adverse events (RR 1.15, 95% CI 0.94 to 1.39; moderate certainty evidence). The study did not report data on symptom resolution. One study compared transcutaneous electrical stimulation to sham stimulation, and another study compared dietitian-prescribed Mediterranean diet with written instructions versus written instructions. These studies did not report any of our predefined primary outcomes.
We identified low to moderate certainty evidence that oral lubiprostone may result in little to no difference in treatment success and adverse events compared to placebo. Based on moderate certainty evidence, there is probably little or no difference between oral prucalopride and placebo in defecation frequency, treatment success, or adverse events. For all other comparisons, the certainty of the evidence for our predefined primary outcomes is very low due to serious concerns with study limitations and imprecision. Consequently, no robust conclusions could be drawn.
Gordon M
,Grafton-Clarke C
,Rajindrajith S
,Benninga MA
,Sinopoulou V
,Akobeng AK
... -
《Cochrane Database of Systematic Reviews》
-
Infliximab for maintenance of medically-induced remission in Crohn's disease.
Infliximab is a monoclonal antibody that binds and neutralises tumour necrosis factor-alpha (TNF-α) which is present in high levels in the blood serum, mucosa and stool of patients with Crohn's disease.
To determine the efficacy and safety of infliximab for maintaining remission in patients with Crohn's disease.
On 31 August, 2021 and 23 June, 2023, we searched CENTRAL, Embase, MEDLINE, ClinicalTrials.gov, and WHO ICTRP.
Randomised controlled trials (RCTs) in which infliximab was compared to placebo or another active comparator for maintenance, remission, or response in patients with Crohn's disease.
Pairs of review authors independently selected studies and conducted data extraction and risk of bias assessment. We expressed outcomes as risk ratios and mean differences with 95% confidence intervals. We assessed the certainty of the evidence using GRADE. Our primary outcome was clinical relapse. Secondary outcomes were loss of clinical response, endoscopic relapse, and withdrawal due to serious and adverse events.
Nine RCTs with 1257 participants were included. They were conducted between 1999 and 2022; seven RCTs included biologically-naive patients, and the remaining two included a mix of naive/not naive patients. Three studies included patients in clinical remission, five included patients with a mix of activity scores, and one study included biologic responders with active disease at baseline. All studies allowed some form of concomitant medication during their duration. One study exclusively included patients with fistulating disease. The age of the participants ranged from 18 to 69 years old. All but one single-centre RCT were multicentre RCTs. Four studies were funded by pharmaceutical companies, two had a mix of commercial and public funding, and two had public funding. Infliximab is probably superior to placebo in preventing clinical relapse in patients who have mixed levels of clinical disease activity at baseline, and are not naive to biologics (56% vs 75%, RR 0.73, 95% CI 0.63 to 0.84, NNTB = 5, moderate-certainty evidence). We cannot draw any conclusions on loss of clinical response (RR 0.59, 95% CI 0.37 to 0.96), withdrawals due to adverse events (RR 0.66, 95% CI 0.37 to 1.19), or serious adverse events (RR 0.60, 95% CI 0.36 to 1.00) because the evidence is very low certainty. Infliximab combined with purine analogues is probably superior to purine analogues for clinical relapse (12% vs 59%, RR 0.20, 95% CI 0.10 to 0.42, NNTB = 2, moderate-certainty evidence), for patients in remission, and who are not naive to biologics. We cannot draw any conclusions on withdrawals due to adverse events (RR 0.47, 95% CI 0.15 to 1.49), and serious adverse events (RR 1.19, 95% CI 0.54 to 2.64) because the evidence is very low certainty. We cannot draw any conclusions about the effects of infliximab on serious adverse events compared to purine analogues (RR 0.79, 95% CI 0.37 to 1.68) for a population in remission at baseline because the evidence is very low certainty. There was no evidence available for the outcomes of clinical relapse, loss of clinical response, and withdrawal due to adverse events. Infliximab may be equivalent to biosimilar for clinical relapse (47% vs 40% RR 1.18, 95% CI 0.82 to 1.69), and it may be slightly less effective in averting loss of clinical response (49% vs 32%, RR 1.50, 95% CI 1.01 to 2.23, low-certainty evidence), for a population with mixed/low disease activity at baseline. Infliximab may be less effective than biosimilar in averting withdrawals due to adverse events (27% vs 0%, RR 20.73, 95% CI 2.86 to 150.33, low-certainty evidence). Infliximab may be equivalent to biosimilar for serious adverse events (10% vs 10%, RR 0.99, 95% CI 0.39 to 2.50, low-certainty evidence). We cannot draw any conclusions on the effects of subcutaneous biosimilar compared with intravenous biosimilar on clinical relapse (RR 1.01, 95% CI 0.65 to 1.57), loss of clinical response (RR 0.94, 95% CI 0.70 to 1.25), and withdrawals due to adverse events (RR 0.77, 95% CI 0.30 to 1.97) for an active disease population with clinical response at baseline because the evidence is of very low certainty. We cannot draw any conclusions on the effects of infliximab compared to adalimumab on loss of clinical response (RR 0.68, 95% CI 0.29 to 1.59), withdrawals due to adverse events (RR 0.10, 95% CI 0.01 to 0.72), serious adverse events (RR 0.09, 95% CI 0.01 to 1.54) for an active disease population with clinical response at baseline because the evidence is of very low certainty. There was no evidence available for the outcome of clinical relapse.
Infliximab is probably more effective in preventing clinical relapse than placebo (moderate-certainty evidence). Infliximab in combination with purine analogues is probably more effective in preventing clinical and endoscopic relapse than purine analogues alone (moderate-certainty evidence). No conclusions can be drawn regarding prevention of loss of clinical response, occurrence of withdrawals due to adverse events, or total adverse events due to very low-certainty evidence for both of these comparisons. There may be little or no difference in prevention of clinical relapse, withdrawal due to adverse events or total adverse events between infliximab and a biosimilar (low-certainty evidence). Infliximab may lead to more loss of clinical response than a biosimilar (low-certainty evidence). We were unable to draw meaningful conclusions about other comparisons and outcomes related to missing data or very low-certainty evidence due to serious concerns about imprecision and risk of bias. Further research should focus on comparisons with other active therapies for maintaining remission, as well as ensuring adequate power calculations and reporting of methods.
Gordon M
,Sinopoulou V
,Akobeng AK
,Sarian A
,Moran GW
... -
《Cochrane Database of Systematic Reviews》
-
Chemotherapy alone versus chemotherapy plus radiotherapy for adults with early-stage Hodgkin's lymphoma.
Early-stage Hodgkin's lymphoma in adults is commonly treated with combined modality treatment of chemotherapy followed by radiotherapy. The role of radiotherapy has been questioned due to potential long-term adverse effects.
To assess the effects of chemotherapy compared to chemotherapy plus radiotherapy in adults with early-stage Hodgkin's lymphoma.
We updated all previous searches for randomised controlled trials (RCTs) on the databases Cochrane Central Register of Controlled Trial, MEDLINE and Embase, in trial registries and in relevant conference proceedings until November 2023.
We included RCTs comparing chemotherapy alone with chemotherapy plus radiotherapy in adults with early-stage Hodgkin's lymphoma and excluded trials with more than 20% of participants with advanced Hodgkin's lymphoma. We considered immunotherapy in addition to chemotherapy eligible if both were applied similarly in the comparator groups, but did not identify such trials. For our comparisons, we separated RCTs with the same number of chemotherapy cycles in both arms and RCTs with a different number of cycles, when the chemotherapy regimens were the same. We separated RCTs which compared participants with a favourable, mixed or unfavourable risk profile.
Two review authors independently screened search results, extracted data and assessed the quality of included trials. A third review author resolved discrepancies. We analysed time-to-event outcomes (overall survival, progression-free survival) as hazard ratios (HR) and binary outcomes (adverse events) as risk ratios (RR). We assessed the certainty of evidence using the GRADE approach.
We included nine comparisons of eight RCTs involving 3840 participants in this updated review. Same number of chemotherapy cycles in both trial arms Favourable disease For overall survival in individuals with favourable Hodgkin's lymphoma, the evidence is uncertain and inconclusive (HR 0.92, 95% confidence interval (CI) 0.11 to 7.92; 2 RCTs, 1245 participants; very low-certainty evidence due to study limitations, inconsistency and imprecision). Additional radiotherapy to chemotherapy is likely to improve progression-free survival (HR 0.36, 95% CI 0.20 to 0.68; 2 RCTs, 1245 participants; moderate-certainty evidence due to study limitations). The evidence was uncertain and inconclusive for second-cancer-related mortality (RR 0.93, 95% CI 0.01 to 74.24; 2 RCTs, 1245 participants; very low-certainty evidence due to study limitations, inconsistency and substantial imprecision) and suggests little to no difference in cardiac disease-related mortality (RR 0.89, 95% CI 0.06 to 14.16; 1 RCT, 667 participants; low-certainty evidence due to substantial imprecision). There were no data on infection-related mortality or infertility. Mixed population For a population of mixed risk profile, the evidence on overall survival is uncertain and inconclusive (HR 0.79, 95% CI 0.13 to 4.80; 2 RCTs, 572 participants; very low-certainty evidence due to study limitations, inconsistency and imprecision). It indicates that additional radiotherapy may lead to an improvement in progression-free survival (HR 0.71, 95% CI 0.43 to 1.17; 2 RCTs, 572 participants; low-certainty evidence due to study limitations and imprecision). The evidence is uncertain and inconclusive for infection-related mortality (RR 1.35, 95% CI 0.17 to 10.87; 2 RCTs, 572 participants) and second-cancer-related mortality (RR 0.52, 95% CI 0.09 to 2.98; 2 RCTs, 572 participants) (both very low-certainty evidence due to study limitations and substantial imprecision), but suggests that additional radiotherapy may increase cardiac disease-related mortality (RR 3.03, 95% CI 0.12 to 73.92; 1 RCT, 420 participants; low-certainty evidence due to substantial imprecision). There were no data on infertility. Unfavourable disease For individuals with unfavourable disease, the evidence on overall survival is uncertain and inconclusive (HR 0.69, 95% CI 0.20 to 2.44; 2 RCTs, 688 participants; very low-certainty evidence due to study limitations and substantial imprecision), but additional radiotherapy probably improves progression-free survival (HR 0.55, 95% CI 0.19 to 1.60; 1 RCT, 651 participants; moderate-certainty evidence due to imprecision). The evidence was uncertain and inconclusive for cardiac disease-related mortality (RR 2.85, 95% CI 0.12 to 65.74; 1 RCT, 37 participants; very low-certainty evidence due to study limitations and substantial imprecision). There were no data on infection-related mortality, second-cancer related mortality or infertility. Different number of chemotherapy cycles in both trial arms Favourable disease The evidence for overall survival in individuals with favourable disease treated with different numbers of chemotherapy cycles in both arms is uncertain and inclusive (HR 0.36, 95% CI 0.04 to 3.38; 1 RCT, 357 participants; very low-certainty evidence due to study limitations and substantial imprecision), yet it suggests a likely improvement in progression-free survival with additional radiotherapy (HR 0.08, 95% CI 0.02 to 0.32; 1 RCT, 357 participants; moderate-certainty evidence due to study limitations). For second-cancer-related mortality, the evidence is uncertain and inconclusive (RR 0.21, 95% CI 0.01 to 4.34; 1 RCT, 465 participants; very low-certainty evidence due to study limitations and substantial imprecision). There were no data on infection-related mortality and infertility and data for cardiac disease-related mortality were not estimable (no events in either group). Unfavourable disease For individuals with an unfavourable risk profile, additional radiotherapy may decrease overall survival slightly (HR 1.66, 95% CI 0.95 to 2.90; 2 RCTs, 698 participants; low-certainty evidence due to study limitations and imprecision), but may slightly improve progression-free survival (HR 0.84, 95% CI 0.53 to 1.33; 2 RCTs, 698 participants; low-certainty evidence due to study limitations and imprecision). The evidence is uncertain and inconclusive for infection-related mortality (RR 6.90, 95% CI 0.36 to 132.34; 1 RCT, 276 participants), second-cancer-related mortality (RR 2.19, 95% CI 0.77 to 6.19; 2 RCTs, 870 participants) and cardiac disease-related mortality (RR 1.60, 95% CI 0.31 to 8.22; 2 RCTs, 870 participants) (all very low-certainty evidence due to study limitations and substantial imprecision). There were no data on infertility.
The chemotherapy regimens in the trials differed and data for regimens commonly used today were limited. Additional radiotherapy may slightly improve progression-free survival. The available data for overall survival and adverse events were of low and very low certainty, and we were unable to draw conclusions about the effects of additional radiotherapy on these outcomes. No studies evaluated infertility. High-quality, longer-term follow-up data are required and data on fertility are needed.
Goldkuhle M
,Kreuzberger N
,von Tresckow B
,Eichenauer DA
,Specht L
,Monsef I
,Skoetz N
... -
《Cochrane Database of Systematic Reviews》
-
Antioxidants for female subfertility.
M.G. Showell, R. Mackenzie‐Proctor, V. Jordan, and R.J. Hart, “Antioxidants for Female Subfertility,” Cochrane Database of Systematic Reviews, no. 8 (2020): CD007807, https://doi.org/10.1002/14651858.CD007807.pub4 This Editorial Note is for the above article, published online on August 27, 2020, in Cochrane Library (cochranelibrary.com), and has been issued by the Publisher, John Wiley & Sons Ltd, in agreement with Cochrane. The Editorial note has been agreed due to concerns discovered by the Cochrane managing editor regarding the retraction of six studies in the Review (Badawy et al. 2006, 10.1016/j.fertnstert.2006.02.097; El Refaeey et al. 2014, 10.1016/j.rbmo.2014.03.011; El Sharkwy & Abd El Aziz 2019a, https://doi.org/10.1002/ijgo.12902; Gerli et al. 2007, https://doi.org/10.26355/eurrev_202309_33752, full text: https://europepmc.org/article/MED/18074942; Ismail et al. 2014, http://dx.doi.org/10.1016/j.ejogrb.2014.06.008; Hashemi et al. 2017, https://doi.org/10.1080/14767058.2017.1372413). In addition, expressions of concern have been published for two studies (Jamilian et al. 2018, https://doi.org/10.1007/s12011-017-1236-3; Zadeh Modarres 2018, https://doi.org/10.1007/s12011-017-1148-2). The retracted studies will be moved to the Excluded Studies table, and their impact on the review findings will be investigated and acted on accordingly in a future update. Initial checks indicate that removal of the six retracted studies did not make an appreciable difference to the results. Likewise, the studies for which Expressions of Concern were issued will be moved to the Awaiting classification table; they did not report any review outcomes, so removal will have no impact on the review findings.
A couple may be considered to have fertility problems if they have been trying to conceive for over a year with no success. This may affect up to a quarter of all couples planning a child. It is estimated that for 40% to 50% of couples, subfertility may result from factors affecting women. Antioxidants are thought to reduce the oxidative stress brought on by these conditions. Currently, limited evidence suggests that antioxidants improve fertility, and trials have explored this area with varied results. This review assesses the evidence for the effectiveness of different antioxidants in female subfertility.
To determine whether supplementary oral antioxidants compared with placebo, no treatment/standard treatment or another antioxidant improve fertility outcomes for subfertile women.
We searched the following databases (from their inception to September 2019), with no language or date restriction: Cochrane Gynaecology and Fertility Group (CGFG) specialised register, CENTRAL, MEDLINE, Embase, PsycINFO, CINAHL and AMED. We checked reference lists of relevant studies and searched the trial registers.
We included randomised controlled trials (RCTs) that compared any type, dose or combination of oral antioxidant supplement with placebo, no treatment or treatment with another antioxidant, among women attending a reproductive clinic. We excluded trials comparing antioxidants with fertility drugs alone and trials that only included fertile women attending a fertility clinic because of male partner infertility.
We used standard methodological procedures expected by Cochrane. The primary review outcome was live birth; secondary outcomes included clinical pregnancy rates and adverse events.
We included 63 trials involving 7760 women. Investigators compared oral antioxidants, including: combinations of antioxidants, N-acetylcysteine, melatonin, L-arginine, myo-inositol, carnitine, selenium, vitamin E, vitamin B complex, vitamin C, vitamin D+calcium, CoQ10, and omega-3-polyunsaturated fatty acids versus placebo, no treatment/standard treatment or another antioxidant. Only 27 of the 63 included trials reported funding sources. Due to the very low-quality of the evidence we are uncertain whether antioxidants improve live birth rate compared with placebo or no treatment/standard treatment (odds ratio (OR) 1.81, 95% confidence interval (CI) 1.36 to 2.43; P < 0.001, I2 = 29%; 13 RCTs, 1227 women). This suggests that among subfertile women with an expected live birth rate of 19%, the rate among women using antioxidants would be between 24% and 36%. Low-quality evidence suggests that antioxidants may improve clinical pregnancy rate compared with placebo or no treatment/standard treatment (OR 1.65, 95% CI 1.43 to 1.89; P < 0.001, I2 = 63%; 35 RCTs, 5165 women). This suggests that among subfertile women with an expected clinical pregnancy rate of 19%, the rate among women using antioxidants would be between 25% and 30%. Heterogeneity was moderately high. Overall 28 trials reported on various adverse events in the meta-analysis. The evidence suggests that the use of antioxidants makes no difference between the groups in rates of miscarriage (OR 1.13, 95% CI 0.82 to 1.55; P = 0.46, I2 = 0%; 24 RCTs, 3229 women; low-quality evidence). There was also no evidence of a difference between the groups in rates of multiple pregnancy (OR 1.00, 95% CI 0.63 to 1.56; P = 0.99, I2 = 0%; 9 RCTs, 1886 women; low-quality evidence). There was also no evidence of a difference between the groups in rates of gastrointestinal disturbances (OR 1.55, 95% CI 0.47 to 5.10; P = 0.47, I2 = 0%; 3 RCTs, 343 women; low-quality evidence). Low-quality evidence showed that there was also no difference between the groups in rates of ectopic pregnancy (OR 1.40, 95% CI 0.27 to 7.20; P = 0.69, I2 = 0%; 4 RCTs, 404 women). In the antioxidant versus antioxidant comparison, low-quality evidence shows no difference in a lower dose of melatonin being associated with an increased live-birth rate compared with higher-dose melatonin (OR 0.94, 95% CI 0.41 to 2.15; P = 0.89, I2 = 0%; 2 RCTs, 140 women). This suggests that among subfertile women with an expected live-birth rate of 24%, the rate among women using a lower dose of melatonin compared to a higher dose would be between 12% and 40%. Similarly with clinical pregnancy, there was no evidence of a difference between the groups in rates between a lower and a higher dose of melatonin (OR 0.94, 95% CI 0.41 to 2.15; P = 0.89, I2 = 0%; 2 RCTs, 140 women). Three trials reported on miscarriage in the antioxidant versus antioxidant comparison (two used doses of melatonin and one compared N-acetylcysteine versus L-carnitine). There were no miscarriages in either melatonin trial. Multiple pregnancy and gastrointestinal disturbances were not reported, and ectopic pregnancy was reported by only one trial, with no events. The study comparing N-acetylcysteine with L-carnitine did not report live birth rate. Very low-quality evidence shows no evidence of a difference in clinical pregnancy (OR 0.81, 95% CI 0.33 to 2.00; 1 RCT, 164 women; low-quality evidence). Low quality evidence shows no difference in miscarriage (OR 1.54, 95% CI 0.42 to 5.67; 1 RCT, 164 women; low-quality evidence). The study did not report multiple pregnancy, gastrointestinal disturbances or ectopic pregnancy. The overall quality of evidence was limited by serious risk of bias associated with poor reporting of methods, imprecision and inconsistency.
In this review, there was low- to very low-quality evidence to show that taking an antioxidant may benefit subfertile women. Overall, there is no evidence of increased risk of miscarriage, multiple births, gastrointestinal effects or ectopic pregnancies, but evidence was of very low quality. At this time, there is limited evidence in support of supplemental oral antioxidants for subfertile women.
Showell MG
,Mackenzie-Proctor R
,Jordan V
,Hart RJ
... -
《Cochrane Database of Systematic Reviews》
-
Tamoxifen for adults with hepatocellular carcinoma.
Hepatocellular carcinoma is the most common type of liver cancer, accounting for 70% to 85% of individuals with primary liver cancer. Tamoxifen has been evaluated in randomised clinical trials in people with hepatocellular cancer. The reported results have been inconsistent.
To evaluate the benefits and harms of tamoxifen or tamoxifen plus any other anticancer drugs compared with no intervention, placebo, any type of standard care, or alternative treatment in adults with hepatocellular carcinoma, irrespective of sex, administered dose, type of formulation, and duration of treatment.
We searched the Cochrane Hepato-Biliary Group Controlled Trials Register, CENTRAL, MEDLINE, Embase, three other databases, and major trials registries, and handsearched reference lists up to 26 March 2024.
Parallel-group randomised clinical trials including adults (aged 18 years and above) diagnosed with advanced or unresectable hepatocellular carcinoma. Had we found cross-over trials, we would have included only the first trial phase. We did not consider data from quasi-randomised trials for analysis.
Our critical outcomes were all-cause mortality, serious adverse events, and health-related quality of life. Our important outcomes were disease progression, and adverse events considered non-serious.
We assessed risk of bias using the RoB 2 tool.
We used standard Cochrane methods and Review Manager. We meta-analysed the outcome data at the longest follow-up. We presented the results of dichotomous outcomes as risk ratios (RR) and continuous data as mean difference (MD), with 95% confidence intervals (CI) using the random-effects model. We summarised the certainty of evidence using GRADE.
We included 10 trials that randomised 1715 participants with advanced, unresectable, or terminal stage hepatocellular carcinoma. Six were single-centre trials conducted in Hong Kong, Italy, and Spain, while three were conducted as multicentre trials in single countries (France, Italy, and Spain), and one trial was conducted in nine countries in the Asia-Pacific region (Australia, Hong Kong, Indonesia, Malaysia, Myanmar, New Zealand, Singapore, South Korea, and Thailand). The experimental intervention was tamoxifen in all trials. The control interventions were no intervention (three trials), placebo (six trials), and symptomatic treatment (one trial). Co-interventions were best supportive care (three trials) and standard care (one trial). The remaining six trials did not provide this information. The number of participants in the trials ranged from 22 to 496 (median 99), mean age was 63.7 (standard deviation 4.18) years, and mean proportion of men was 74.7% (standard deviation 42%). Follow-up was three months to five years.
Ten trials evaluated oral tamoxifen at five different dosages (ranging from 20 mg per day to 120 mg per day). All trials investigated one or more of our outcomes. We performed meta-analyses when at least two trials assessed similar types of tamoxifen versus similar control interventions. Eight trials evaluated all-cause mortality at varied follow-up points. Tamoxifen versus the control interventions (i.e. no treatment, placebo, and symptomatic treatment) results in little to no difference in mortality between one and five years (RR 0.99, 95% CI 0.92 to 1.06; 8 trials, 1364 participants; low-certainty evidence). In total, 488/682 (71.5%) participants died in the tamoxifen groups versus 487/682 (71.4%) in the control groups. The separate analysis results for one, between two and three, and five years were comparable to the analysis result for all follow-up periods taken together. The evidence is very uncertain about the effect of tamoxifen versus no treatment on serious adverse events at one-year follow-up (RR 0.44, 95% CI 0.19 to 1.06; 1 trial, 36 participants; very low-certainty evidence). A total of 5/20 (25.0%) participants in the tamoxifen group versus 9/16 (56.3%) participants in the control group experienced serious adverse events. One trial measured health-related quality of life at baseline and at nine months' follow-up, using the Spitzer Quality of Life Index. The evidence is very uncertain about the effect of tamoxifen versus no treatment on health-related quality of life (MD 0.03, 95% CI -0.45 to 0.51; 1 trial, 420 participants; very low-certainty evidence). A second trial found no appreciable difference in global health-related quality of life scores. No further data were provided. Tamoxifen versus control interventions (i.e. no treatment, placebo, or symptomatic treatment) results in little to no difference in disease progression between one and five years' follow-up (RR 1.02, 95% CI 0.91 to 1.14; 4 trials, 720 participants; low-certainty evidence). A total of 191/358 (53.3%) participants in the tamoxifen group versus 198/362 (54.7%) participants in the control group had progression of hepatocellular carcinoma. Tamoxifen versus control interventions (i.e. no treatment or placebo) may have little to no effect on adverse events considered non-serious during treatment, but the evidence is very uncertain (RR 1.17, 95% CI 0.45 to 3.06; 4 trials, 462 participants; very low-certainty evidence). A total of 10/265 (3.8%) participants in the tamoxifen group versus 6/197 (3.0%) participants in the control group had adverse events considered non-serious. We identified no trials with participants diagnosed with early stages of hepatocellular carcinoma. We identified no ongoing trials.
Based on the low- and very low-certainty evidence, the effects of tamoxifen on all-cause mortality, disease progression, serious adverse events, health-related quality of life, and adverse events considered non-serious in adults with advanced, unresectable, or terminal stage hepatocellular carcinoma when compared with no intervention, placebo, or symptomatic treatment could not be established. Our findings are mostly based on trials at high risk of bias with insufficient power (fewer than 100 participants), and a lack of trial data on clinically important outcomes. Therefore, firm conclusions cannot be drawn. Trials comparing tamoxifen administered with any other anticancer drug versus standard care, usual care, or alternative treatment as control interventions were lacking. Evidence on the benefits and harms of tamoxifen in participants at the early stages of hepatocellular carcinoma was also lacking.
This Cochrane review had no dedicated funding.
Protocol available via DOI: 10.1002/14651858.CD014869.
Naing C
,Ni H
,Aung HH
《Cochrane Database of Systematic Reviews》