Cryopreservation of mesenchymal stem/stromal cells using a DMSO-free solution is comparable to DMSO-containing cryoprotectants: results of an international multicenter PACT/BEST collaborative study.
An essential aspect of ensuring availability and stability of mesenchymal stem/stromal cells (MSCs) products for clinical use is that these cells are cryopreserved before individual infusion into patients. Currently, cryopreservation of MSCs involves use of a cryoprotectant solution containing dimethyl sulfoxide (DMSO). However, it is recognized that DMSO may be toxic for both the patient and the MSC product. In this Production Assistance for Cellular Therapies (PACT) and Biomedical Excellence for Safer Transfusion (BEST) Collaborative study, we compared a novel DMSO-free solution with DMSO containing cryoprotectant solutions for freezing MSCs.
A DMSO-free cryoprotectant solution containing sucrose, glycerol, and isoleucine (SGI) in a base of Plasmalyte A was prepared at the University of Minnesota. Cryoprotectant solutions containing 5-10% DMSO (in-house) were prepared at seven participating centers (five from USA, one each from Australia and Germany). The MSCs were isolated from bone marrow or adipose tissue and cultured ex vivo per local protocols at each center. The cells in suspension were frozen by aliquoting into vials/bags. For six out of the seven centers, the vials/bags were placed in a controlled rate freezer (one center placed them at -80°C freezer overnight) before transferring to liquid nitrogen. The cells were kept frozen for at least one week before thawing and testing. Pre- and post-thaw assessment included cell viability and recovery, immunophenotype as well as transcriptional and gene expression profiles. Linear regression, mixed effects models and two-sided t-tests were applied for statistical analysis.
MSCs had an average viability of 94.3% (95% CI: 87.2-100%) before cryopreservation, decreasing by 4.5% (95% CI: 0.03-9.0%; P: 0.049) and 11.4% (95% CI: 6.9-15.8%; P< 0.001), for MSCs cryopreserved in the in-house and SGI solutions, respectively. The average recovery of viable MSCs cryopreserved in the SGI was 92.9% (95% CI: 85.7-100.0%), and it was lower by 5.6% (95% CI: 1.3-9.8%, P < 0.013) for the in-house solution. Additionally, MSCs cryopreserved in the two solutions had expected level of expressions for CD45, CD73, CD90, and CD105 with no significant difference in global gene expression profiles.
MSCs cryopreserved in a DMSO-free solution containing sucrose, glycerol, and isoleucine in a base of Plasmalyte A had slightly lower cell viability, better recovery, and comparable immunophenotype and global gene expression profiles compared to MSCs cryopreserved in DMSO containing solutions. The average viability of MSCs in the novel solution was above 80% and, thus, likely clinically acceptable. Future studies are suggested to test the post-thaw functions of MSCs cryopreserved in the novel DMSO-free solution.
Mamo T
,Cox CA
,Demorest C
,Fontaine MJ
,Hubel A
,Kelley L
,Khan A
,Marks DC
,Pati S
,Reems JA
,Spohn G
,Schäfer R
,Shi R
,Shao L
,Stroncek D
,McKenna DH
,Biomedical Excellence for Safer Transfusion (BEST) Collaborative
... -
《-》
Falls prevention interventions for community-dwelling older adults: systematic review and meta-analysis of benefits, harms, and patient values and preferences.
About 20-30% of older adults (≥ 65 years old) experience one or more falls each year, and falls are associated with substantial burden to the health care system, individuals, and families from resulting injuries, fractures, and reduced functioning and quality of life. Many interventions for preventing falls have been studied, and their effectiveness, factors relevant to their implementation, and patient preferences may determine which interventions to use in primary care. The aim of this set of reviews was to inform recommendations by the Canadian Task Force on Preventive Health Care (task force) on fall prevention interventions. We undertook three systematic reviews to address questions about the following: (i) the benefits and harms of interventions, (ii) how patients weigh the potential outcomes (outcome valuation), and (iii) patient preferences for different types of interventions, and their attributes, shown to offer benefit (intervention preferences).
We searched four databases for benefits and harms (MEDLINE, Embase, AgeLine, CENTRAL, to August 25, 2023) and three for outcome valuation and intervention preferences (MEDLINE, PsycINFO, CINAHL, to June 9, 2023). For benefits and harms, we relied heavily on a previous review for studies published until 2016. We also searched trial registries, references of included studies, and recent reviews. Two reviewers independently screened studies. The population of interest was community-dwelling adults ≥ 65 years old. We did not limit eligibility by participant fall history. The task force rated several outcomes, decided on their eligibility, and provided input on the effect thresholds to apply for each outcome (fallers, falls, injurious fallers, fractures, hip fractures, functional status, health-related quality of life, long-term care admissions, adverse effects, serious adverse effects). For benefits and harms, we included a broad range of non-pharmacological interventions relevant to primary care. Although usual care was the main comparator of interest, we included studies comparing interventions head-to-head and conducted a network meta-analysis (NMAs) for each outcome, enabling analysis of interventions lacking direct comparisons to usual care. For benefits and harms, we included randomized controlled trials with a minimum 3-month follow-up and reporting on one of our fall outcomes (fallers, falls, injurious fallers); for the other questions, we preferred quantitative data but considered qualitative findings to fill gaps in evidence. No date limits were applied for benefits and harms, whereas for outcome valuation and intervention preferences we included studies published in 2000 or later. All data were extracted by one trained reviewer and verified for accuracy and completeness. For benefits and harms, we relied on the previous review team's risk-of-bias assessments for benefit outcomes, but otherwise, two reviewers independently assessed the risk of bias (within and across study). For the other questions, one reviewer verified another's assessments. Consensus was used, with adjudication by a lead author when necessary. A coding framework, modified from the ProFANE taxonomy, classified interventions and their attributes (e.g., supervision, delivery format, duration/intensity). For benefit outcomes, we employed random-effects NMA using a frequentist approach and a consistency model. Transitivity and coherence were assessed using meta-regressions and global and local coherence tests, as well as through graphical display and descriptive data on the composition of the nodes with respect to major pre-planned effect modifiers. We assessed heterogeneity using prediction intervals. For intervention-related adverse effects, we pooled proportions except for vitamin D for which we considered data in the control groups and undertook random-effects pairwise meta-analysis using a relative risk (any adverse effects) or risk difference (serious adverse effects). For outcome valuation, we pooled disutilities (representing the impact of a negative event, e.g. fall, on one's usual quality of life, with 0 = no impact and 1 = death and ~ 0.05 indicating important disutility) from the EQ-5D utility measurement using the inverse variance method and a random-effects model and explored heterogeneity. When studies only reported other data, we compared the findings with our main analysis. For intervention preferences, we used a coding schema identifying whether there were strong, clear, no, or variable preferences within, and then across, studies. We assessed the certainty of evidence for each outcome using CINeMA for benefit outcomes and GRADE for all other outcomes.
A total of 290 studies were included across the reviews, with two studies included in multiple questions. For benefits and harms, we included 219 trials reporting on 167,864 participants and created 59 interventions (nodes). Transitivity and coherence were assessed as adequate. Across eight NMAs, the number of contributing trials ranged between 19 and 173, and the number of interventions ranged from 19 to 57. Approximately, half of the interventions in each network had at least low certainty for benefit. The fallers outcome had the highest number of interventions with moderate certainty for benefit (18/57). For the non-fall outcomes (fractures, hip fracture, long-term care [LTC] admission, functional status, health-related quality of life), many interventions had very low certainty evidence, often from lack of data. We prioritized findings from 21 interventions where there was moderate certainty for at least some benefit. Fourteen of these had a focus on exercise, the majority being supervised (for > 2 sessions) and of long duration (> 3 months), and with balance/resistance and group Tai Chi interventions generally having the most outcomes with at least low certainty for benefit. None of the interventions having moderate certainty evidence focused on walking. Whole-body vibration or home-hazard assessment (HHA) plus exercise provided to everyone showed moderate certainty for some benefit. No multifactorial intervention alone showed moderate certainty for any benefit. Six interventions only had very-low certainty evidence for the benefit outcomes. Two interventions had moderate certainty of harmful effects for at least one benefit outcome, though the populations across studies were at high risk for falls. Vitamin D and most single-component exercise interventions are probably associated with minimal adverse effects. Some uncertainty exists about possible adverse effects from other interventions. For outcome valuation, we included 44 studies of which 34 reported EQ-5D disutilities. Admission to long-term care had the highest disutility (1.0), but the evidence was rated as low certainty. Both fall-related hip (moderate certainty) and non-hip (low certainty) fracture may result in substantial disutility (0.53 and 0.57) in the first 3 months after injury. Disutility for both hip and non-hip fractures is probably lower 12 months after injury (0.16 and 0.19, with high and moderate certainty, respectively) compared to within the first 3 months. No study measured the disutility of an injurious fall. Fractures are probably more important than either falls (0.09 over 12 months) or functional status (0.12). Functional status may be somewhat more important than falls. For intervention preferences, 29 studies (9 qualitative) reported on 17 comparisons among single-component interventions showing benefit. Exercise interventions focusing on balance and/or resistance training appear to be clearly preferred over Tai Chi and other forms of exercise (e.g., yoga, aerobic). For exercise programs in general, there is probably variability among people in whether they prefer group or individual delivery, though there was high certainty that individual was preferred over group delivery of balance/resistance programs. Balance/resistance exercise may be preferred over education, though the evidence was low certainty. There was low certainty for a slight preference for education over cognitive-behavioral therapy, and group education may be preferred over individual education.
To prevent falls among community-dwelling older adults, evidence is most certain for benefit, at least over 1-2 years, from supervised, long-duration balance/resistance and group Tai Chi interventions, whole-body vibration, high-intensity/dose education or cognitive-behavioral therapy, and interventions of comprehensive multifactorial assessment with targeted treatment plus HHA, HHA plus exercise, or education provided to everyone. Adding other interventions to exercise does not appear to substantially increase benefits. Overall, effects appear most applicable to those with elevated fall risk. Choice among effective interventions that are available may best depend on individual patient preferences, though when implementing new balance/resistance programs delivering individual over group sessions when feasible may be most acceptable. Data on more patient-important outcomes including fall-related fractures and adverse effects would be beneficial, as would studies focusing on equity-deserving populations and on programs delivered virtually.
Not registered.
Pillay J
,Gaudet LA
,Saba S
,Vandermeer B
,Ashiq AR
,Wingert A
,Hartling L
... -
《Systematic Reviews》
Next-generation Sequencing Results Require Higher Inoculum for Cutibacterium acnes Detection Than Conventional Anaerobic Culture.
Cutibacterium acnes has been described as the most common causative microorganism in prosthetic shoulder infections. Conventional anaerobic culture or molecular-based technologies are usually used for this purpose, but little to no concordance between these methodologies (k = 0.333 or less) has been observed.
(1) Is the minimum C. acnes load for detection higher for next-generation sequencing (NGS) than for anaerobic conventional culture? (2) What duration of incubation is necessary for anaerobic culture to detect all C. acnes loads?
Five C. acnes strains were tested for this study: Four strains were causing infection and were isolated from surgical samples. Meanwhile, the other was a reference strain commonly used as a positive and quality control in microbiology and bioinformatics. To create inoculums with varying degrees of bacterial load, we began with a standard bacterial suspension at 1.5 x 10 8 colony-forming units (CFU)/mL and created six more diluted suspensions (from 1.5 x 10 6 CFU/mL to 1.5 x 10 1 CFU/mL). Briefly, to do so, we transferred 200 µL from the tube with the highest inoculum (for example, 1.5 x 10 6 CFU/mL) to the following dilution tube (1.5 x 10 5 CFU/mL; 1800 µL of diluent + 200 µL of 1.5 x 10 6 CFU/mL). We serially continued the transfers to create all diluted suspensions. Six tubes were prepared per strain. Thirty bacterial suspensions were tested per assay. Then, 100 µL of each diluted suspension was inoculated into brain heart infusion agar with horse blood and taurocholate agar plates. Two plates were used per bacterial suspension in each assay. All plates were incubated at 37°C in an anaerobic chamber and assessed for growth after 3 days of incubation and daily thereafter until positive or Day 14. The remaining volume of each bacterial suspension was sent for NGS analysis to identify bacterial DNA copies. We performed the experimental assays in duplicate. We calculated mean DNA copies and CFUs for each strain, bacterial load, and incubation timepoint assessed. We reported detection by NGS and culture as a qualitative variable based on the identification or absence of DNA copies and CFUs, respectively. In this way, we identified the minimum bacterial load detected by NGS and culture, regardless of incubation time. We performed a qualitative comparison of detection rates between methodologies. Simultaneously, we tracked C. acnes growth on agar plates and determined the minimum incubation time in days required for CFU detection in all strains and loads examined in this study. Growth detection and bacterial CFU counting were performed by three laboratory personnel, with a high intraobserver and interobserver agreement (κ > 0.80). A two-tailed p value below 0.05 was considered statistically significant.
Conventional cultures can detect C. acnes at a load of 1.5 x 10 1 CFU/mL, whereas NGS can detect bacteria when the concentration was higher, at 1.5 x 10 2 CFU/mL. This is represented by a lower positive detection proportion (73% [22 of 30]) for NGS than for cultures (100% [30 of 30]); p = 0.004). By 7 days, anaerobic cultures were able to detect all C. acnes loads, even at the lowest concentrations.
When NGS is negative and culture is positive for C. acnes , there is likely a low bacterial load. Holding cultures beyond 7 days is likely unnecessary.
This is important for treating physicians to decide whether low bacterial loads necessitate aggressive antibiotic treatment or whether they are more likely contaminants. Cultures that are positive beyond 7 days likely represent contamination or bacterial loads even below the dilution used in this study. Physicians may benefit from studies designed to clarify the clinical importance of the low bacteria loads used in this study at which both methodologies' detection differed. Moreover, researchers might explore whether even lower C. acnes loads have a role in true periprosthetic joint infection.
Fernández-Rodríguez D
,Cho J
,Parvizi N
,Khan AZ
,Parvizi J
,Namdari S
... -
《-》