Predicting the severity of mycoplasma pneumoniae pneumonia in pediatric and adult patients: a multicenter study.

来自 PUBMED

作者:

Zhuo LYHao JWSong ZJMeng HWang TDYang LLYang ZMMa JMShen DCui JJChen WJYang WZang LLWang JNYin XP

展开

摘要:

The purpose of this study is to develop a nomogram model for early prediction of the severe mycoplasma pneumoniae pneumonia (SMPP) in Pediatric and Adult Patients. A retrospective analysis was conducted on patients with MPP, classifying them into SMPP and non-severe MPP (NSMPP) groups. A total of 550 patients (NSMPP 374 and SMPP 176) were enrolled in the study and allocated to training, validation cohorts. 278 patients (NSMPP 224 and SMPP 54) were retrospectively collected from two institutions and allocated to testing cohort. The risk factors for SMPP were identified using univariate analysis. For radiomic feature selection, Spearman's correlation and the least absolute shrinkage and selection operator (LASSO) were utilized. Logistic regression was used to build different models, including clinical, imaging, radiomics, and integrated models (combining clinical, imaging, and radiomics features selected). The model's discrimination was evaluated using a receiver operating characteristic curve, its calibration with a calibration curve, and the results were visualized using the Hosmer-Lemeshow goodness-of-fit test. Thirteen clinical features and fourteen imaging features were selected for constructing the clinical and imaging models. Simultaneously, a set of twenty-five radiomics features were utilized to build the radiomics model. The integrated model demonstrated good calibration and discrimination in the training cohorts (AUC, 0.922; 95% CI: 0.900, 0.942), validation cohorts (AUC, 0.879; 95% CI: 0.806, 0.920), and testing cohorts (AUC, 0.877; 95% CI: 0.836, 0.916). The discriminatory and predictive efficacy of the clinical model in testing cohorts increased further after clinical and radiological features were incorporated (AUC, 0.849 vs. 0.922, P = 0.002). The model demonstrated exemplary predictive efficacy for SMPP by leveraging a comprehensive set of inputs, encompassing clinical data, quantitative and qualitative radiological features, along with radiomics features. The integration of these three aspects in the predictive model further enhanced the performance of the clinical model, indicating the potential for extensive clinical applications.

收起

展开

DOI:

10.1038/s41598-024-74251-5

被引量:

1

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(100)

参考文献(33)

引证文献(1)

来源期刊

Scientific Reports

影响因子:4.991

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读