

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(100)
参考文献(80)
引证文献(0)
-
Yi X ,Yang S ,Yang J ,Chen X ,Zhang A ,Zeng Q ,Luo W ,Li Q ,Hu J ... - 《-》
被引量: - 发表:1970年 -
The renin-angiotensin-aldosterone system (RAAS) plays a pivotal role in regulating blood pressure (BP), with dysregulation of RAAS resulting in hypertension and potentially heart failure (HF), myocardial infarction (MI), cardio-renal syndrome, and stroke. RAAS inhibitors, such as angiotensin-converting enzyme inhibitors (ACEis) and angiotensin receptor blockers (ARBs), have advantages beyond BP control. However, differences between these two drug classes need to be considered when choosing a therapy for preventing cardiovascular events. A panel of 36 Egyptian cardiologists developed consensus statements on RAAS inhibitors for primary and secondary prevention of cardiovascular outcomes and stroke, using a modified three-step Delphi process. The consensus statements highlight the importance of effective BP control and the role of RAAS blockade for prevention and management of various cardiovascular diseases. ACEis and ARBs differ in their mode of action and, thus, clinical effects. On the basis of available evidence, the consensus group recommended the following: ACEis should be considered as first choice (in preference to ARBs) to reduce the risk of MI, for primary prevention of HF, and for secondary prevention of stroke. ACEis and ARBs show equivalent efficacy for the primary prevention of stroke. Evidence also favors the preferential use of ACEis in patients with type 2 diabetes, for BP control, for the primary prevention of diabetic kidney disease, and to reduce the risk of major cardiovascular and renal outcomes. Treatment with an ACEi should be started within 24 h of ST segment elevation MI (and continued long term) in patients with HF, left ventricular systolic dysfunction, and/or diabetes. Angiotensin receptor/neprilysin inhibitors (ARNIs) are the first choice for patients with HF and reduced ejection fraction, with ACEis being the second choice in this group. ARBs are indicated as alternatives in patients who cannot tolerate ACEis. ACEis may be associated with cough development, but the incidence tends to be overestimated, and the risk can be reduced by use of a lipophilic ACEi or combining the ACEi with a calcium channel blocker. RAAS blockade is an essential component of hypertension therapy; however, the protective effects provided by ACEis are superior to those of ARBs. Therefore, an ACEi is indicated in almost all cases, unless not tolerated.
Sobhy M ,Eletriby A ,Ragy H ,Kandil H ,Saleh MA ,Farag N ,Guindy R ,Bendary A ,Nayel AME ,Shawky A ,Khairy A ,Mortada A ,Zarif B ,Badran H ,Khorshid H ,Mahmoud K ,Said K ,Leon K ,Abdelsabour M ,Tawfik M ,Abdelmegid MAF ,Koriem M ,Loutfi M ,Wadie M ,Elnoamany M ,Sadaka M ,Seleem M ,Zahran M ,Amin OA ,Elkaffas S ,Ayad S ,Kilany WE ,Ammar W ,Elawady W ,Elhammady W ,Abdelhady Y ... - 《-》
被引量: - 发表:1970年 -
About 20-30% of older adults (≥ 65 years old) experience one or more falls each year, and falls are associated with substantial burden to the health care system, individuals, and families from resulting injuries, fractures, and reduced functioning and quality of life. Many interventions for preventing falls have been studied, and their effectiveness, factors relevant to their implementation, and patient preferences may determine which interventions to use in primary care. The aim of this set of reviews was to inform recommendations by the Canadian Task Force on Preventive Health Care (task force) on fall prevention interventions. We undertook three systematic reviews to address questions about the following: (i) the benefits and harms of interventions, (ii) how patients weigh the potential outcomes (outcome valuation), and (iii) patient preferences for different types of interventions, and their attributes, shown to offer benefit (intervention preferences). We searched four databases for benefits and harms (MEDLINE, Embase, AgeLine, CENTRAL, to August 25, 2023) and three for outcome valuation and intervention preferences (MEDLINE, PsycINFO, CINAHL, to June 9, 2023). For benefits and harms, we relied heavily on a previous review for studies published until 2016. We also searched trial registries, references of included studies, and recent reviews. Two reviewers independently screened studies. The population of interest was community-dwelling adults ≥ 65 years old. We did not limit eligibility by participant fall history. The task force rated several outcomes, decided on their eligibility, and provided input on the effect thresholds to apply for each outcome (fallers, falls, injurious fallers, fractures, hip fractures, functional status, health-related quality of life, long-term care admissions, adverse effects, serious adverse effects). For benefits and harms, we included a broad range of non-pharmacological interventions relevant to primary care. Although usual care was the main comparator of interest, we included studies comparing interventions head-to-head and conducted a network meta-analysis (NMAs) for each outcome, enabling analysis of interventions lacking direct comparisons to usual care. For benefits and harms, we included randomized controlled trials with a minimum 3-month follow-up and reporting on one of our fall outcomes (fallers, falls, injurious fallers); for the other questions, we preferred quantitative data but considered qualitative findings to fill gaps in evidence. No date limits were applied for benefits and harms, whereas for outcome valuation and intervention preferences we included studies published in 2000 or later. All data were extracted by one trained reviewer and verified for accuracy and completeness. For benefits and harms, we relied on the previous review team's risk-of-bias assessments for benefit outcomes, but otherwise, two reviewers independently assessed the risk of bias (within and across study). For the other questions, one reviewer verified another's assessments. Consensus was used, with adjudication by a lead author when necessary. A coding framework, modified from the ProFANE taxonomy, classified interventions and their attributes (e.g., supervision, delivery format, duration/intensity). For benefit outcomes, we employed random-effects NMA using a frequentist approach and a consistency model. Transitivity and coherence were assessed using meta-regressions and global and local coherence tests, as well as through graphical display and descriptive data on the composition of the nodes with respect to major pre-planned effect modifiers. We assessed heterogeneity using prediction intervals. For intervention-related adverse effects, we pooled proportions except for vitamin D for which we considered data in the control groups and undertook random-effects pairwise meta-analysis using a relative risk (any adverse effects) or risk difference (serious adverse effects). For outcome valuation, we pooled disutilities (representing the impact of a negative event, e.g. fall, on one's usual quality of life, with 0 = no impact and 1 = death and ~ 0.05 indicating important disutility) from the EQ-5D utility measurement using the inverse variance method and a random-effects model and explored heterogeneity. When studies only reported other data, we compared the findings with our main analysis. For intervention preferences, we used a coding schema identifying whether there were strong, clear, no, or variable preferences within, and then across, studies. We assessed the certainty of evidence for each outcome using CINeMA for benefit outcomes and GRADE for all other outcomes. A total of 290 studies were included across the reviews, with two studies included in multiple questions. For benefits and harms, we included 219 trials reporting on 167,864 participants and created 59 interventions (nodes). Transitivity and coherence were assessed as adequate. Across eight NMAs, the number of contributing trials ranged between 19 and 173, and the number of interventions ranged from 19 to 57. Approximately, half of the interventions in each network had at least low certainty for benefit. The fallers outcome had the highest number of interventions with moderate certainty for benefit (18/57). For the non-fall outcomes (fractures, hip fracture, long-term care [LTC] admission, functional status, health-related quality of life), many interventions had very low certainty evidence, often from lack of data. We prioritized findings from 21 interventions where there was moderate certainty for at least some benefit. Fourteen of these had a focus on exercise, the majority being supervised (for > 2 sessions) and of long duration (> 3 months), and with balance/resistance and group Tai Chi interventions generally having the most outcomes with at least low certainty for benefit. None of the interventions having moderate certainty evidence focused on walking. Whole-body vibration or home-hazard assessment (HHA) plus exercise provided to everyone showed moderate certainty for some benefit. No multifactorial intervention alone showed moderate certainty for any benefit. Six interventions only had very-low certainty evidence for the benefit outcomes. Two interventions had moderate certainty of harmful effects for at least one benefit outcome, though the populations across studies were at high risk for falls. Vitamin D and most single-component exercise interventions are probably associated with minimal adverse effects. Some uncertainty exists about possible adverse effects from other interventions. For outcome valuation, we included 44 studies of which 34 reported EQ-5D disutilities. Admission to long-term care had the highest disutility (1.0), but the evidence was rated as low certainty. Both fall-related hip (moderate certainty) and non-hip (low certainty) fracture may result in substantial disutility (0.53 and 0.57) in the first 3 months after injury. Disutility for both hip and non-hip fractures is probably lower 12 months after injury (0.16 and 0.19, with high and moderate certainty, respectively) compared to within the first 3 months. No study measured the disutility of an injurious fall. Fractures are probably more important than either falls (0.09 over 12 months) or functional status (0.12). Functional status may be somewhat more important than falls. For intervention preferences, 29 studies (9 qualitative) reported on 17 comparisons among single-component interventions showing benefit. Exercise interventions focusing on balance and/or resistance training appear to be clearly preferred over Tai Chi and other forms of exercise (e.g., yoga, aerobic). For exercise programs in general, there is probably variability among people in whether they prefer group or individual delivery, though there was high certainty that individual was preferred over group delivery of balance/resistance programs. Balance/resistance exercise may be preferred over education, though the evidence was low certainty. There was low certainty for a slight preference for education over cognitive-behavioral therapy, and group education may be preferred over individual education. To prevent falls among community-dwelling older adults, evidence is most certain for benefit, at least over 1-2 years, from supervised, long-duration balance/resistance and group Tai Chi interventions, whole-body vibration, high-intensity/dose education or cognitive-behavioral therapy, and interventions of comprehensive multifactorial assessment with targeted treatment plus HHA, HHA plus exercise, or education provided to everyone. Adding other interventions to exercise does not appear to substantially increase benefits. Overall, effects appear most applicable to those with elevated fall risk. Choice among effective interventions that are available may best depend on individual patient preferences, though when implementing new balance/resistance programs delivering individual over group sessions when feasible may be most acceptable. Data on more patient-important outcomes including fall-related fractures and adverse effects would be beneficial, as would studies focusing on equity-deserving populations and on programs delivered virtually. Not registered.
Pillay J ,Gaudet LA ,Saba S ,Vandermeer B ,Ashiq AR ,Wingert A ,Hartling L ... - 《Systematic Reviews》
被引量: - 发表:1970年 -
Pharmacological treatments in panic disorder in adults: a network meta-analysis.
A panic attack is a discrete period of fear or anxiety that has a rapid onset and reaches a peak within 10 minutes. The main symptoms involve bodily systems, such as racing heart, chest pain, sweating, shaking, dizziness, flushing, churning stomach, faintness and breathlessness. Other recognised panic attack symptoms involve fearful cognitions, such as the fear of collapse, going mad or dying, and derealisation (the sensation that the world is unreal). Panic disorder is common in the general population with a prevalence of 1% to 4%. The treatment of panic disorder includes psychological and pharmacological interventions, including antidepressants and benzodiazepines. To compare, via network meta-analysis, individual drugs (antidepressants and benzodiazepines) or placebo in terms of efficacy and acceptability in the acute treatment of panic disorder, with or without agoraphobia. To rank individual active drugs for panic disorder (antidepressants, benzodiazepines and placebo) according to their effectiveness and acceptability. To rank drug classes for panic disorder (selective serotonin reuptake inhibitors (SSRIs), serotonin-norepinephrine reuptake inhibitors (SNRIs), tricyclic antidepressants (TCAs), mono-amine oxidase inhibitors (MAOIs) and benzodiazepines (BDZs) and placebo) according to their effectiveness and acceptability. To explore heterogeneity and inconsistency between direct and indirect evidence in a network meta-analysis. We searched the Cochrane Common Mental Disorders Specialised Register, CENTRAL, CDSR, MEDLINE, Ovid Embase and PsycINFO to 26 May 2022. We included randomised controlled trials (RCTs) of people aged 18 years or older of either sex and any ethnicity with clinically diagnosed panic disorder, with or without agoraphobia. We included trials that compared the effectiveness of antidepressants and benzodiazepines with each other or with a placebo. Two authors independently screened titles/abstracts and full texts, extracted data and assessed risk of bias. We analysed dichotomous data and continuous data as risk ratios (RRs), mean differences (MD) or standardised mean differences (SMD): response to treatment (i.e. substantial improvement from baseline as defined by the original investigators: dichotomous outcome), total number of dropouts due to any reason (as a proxy measure of treatment acceptability: dichotomous outcome), remission (i.e. satisfactory end state as defined by global judgement of the original investigators: dichotomous outcome), panic symptom scales and global judgement (continuous outcome), frequency of panic attacks (as recorded, for example, by a panic diary; continuous outcome), agoraphobia (dichotomous outcome). We assessed the certainty of evidence using threshold analyses. Overall, we included 70 trials in this review. Sample sizes ranged between 5 and 445 participants in each arm, and the total sample size per study ranged from 10 to 1168. Thirty-five studies included sample sizes of over 100 participants. There is evidence from 48 RCTs (N = 10,118) that most medications are more effective in the response outcome than placebo. In particular, diazepam, alprazolam, clonazepam, paroxetine, venlafaxine, clomipramine, fluoxetine and adinazolam showed the strongest effect, with diazepam, alprazolam and clonazepam ranking as the most effective. We found heterogeneity in most of the comparisons, but our threshold analyses suggest that this is unlikely to impact the findings of the network meta-analysis. Results from 64 RCTs (N = 12,310) suggest that most medications are associated with either a reduced or similar risk of dropouts to placebo. Alprazolam and diazepam were associated with a lower dropout rate compared to placebo and were ranked as the most tolerated of all the medications examined. Thirty-two RCTs (N = 8569) were included in the remission outcome. Most medications were more effective than placebo, namely desipramine, fluoxetine, clonazepam, diazepam, fluvoxamine, imipramine, venlafaxine and paroxetine, and their effects were clinically meaningful. Amongst these medications, desipramine and alprazolam were ranked highest. Thirty-five RCTs (N = 8826) are included in the continuous outcome reduction in panic scale scores. Brofaromine, clonazepam and reboxetine had the strongest reductions in panic symptoms compared to placebo, but results were based on either one trial or very small trials. Forty-one RCTs (N = 7853) are included in the frequency of panic attack outcome. Only clonazepam and alprazolam showed a strong reduction in the frequency of panic attacks compared to placebo, and were ranked highest. Twenty-six RCTs (N = 7044) provided data for agoraphobia. The strongest reductions in agoraphobia symptoms were found for citalopram, reboxetine, escitalopram, clomipramine and diazepam, compared to placebo. For the pooled intervention classes, we examined the two primary outcomes (response and dropout). The classes of medication were: SSRIs, SNRIs, TCAs, MAOIs and BDZs. For the response outcome, all classes of medications examined were more effective than placebo. TCAs as a class ranked as the most effective, followed by BDZs and MAOIs. SSRIs as a class ranked fifth on average, while SNRIs were ranked lowest. When we compared classes of medication with each other for the response outcome, we found no difference between classes. Comparisons between MAOIs and TCAs and between BDZs and TCAs also suggested no differences between these medications, but the results were imprecise. For the dropout outcome, BDZs were the only class associated with a lower dropout compared to placebo and were ranked first in terms of tolerability. The other classes did not show any difference in dropouts compared to placebo. In terms of ranking, TCAs are on average second to BDZs, followed by SNRIs, then by SSRIs and lastly by MAOIs. BDZs were associated with lower dropout rates compared to SSRIs, SNRIs and TCAs. The quality of the studies comparing antidepressants with placebo was moderate, while the quality of the studies comparing BDZs with placebo and antidepressants was low. In terms of efficacy, SSRIs, SNRIs (venlafaxine), TCAs, MAOIs and BDZs may be effective, with little difference between classes. However, it is important to note that the reliability of these findings may be limited due to the overall low quality of the studies, with all having unclear or high risk of bias across multiple domains. Within classes, some differences emerged. For example, amongst the SSRIs paroxetine and fluoxetine seem to have stronger evidence of efficacy than sertraline. Benzodiazepines appear to have a small but significant advantage in terms of tolerability (incidence of dropouts) over other classes.
Guaiana G ,Meader N ,Barbui C ,Davies SJ ,Furukawa TA ,Imai H ,Dias S ,Caldwell DM ,Koesters M ,Tajika A ,Bighelli I ,Pompoli A ,Cipriani A ,Dawson S ,Robertson L ... - 《Cochrane Database of Systematic Reviews》
被引量: 4 发表:1970年 -
Adverse effects of immunotherapies for multiple sclerosis: a network meta-analysis.
Multiple sclerosis (MS) is a chronic disease of the central nervous system that affects mainly young adults (two to three times more frequently in women than in men) and causes significant disability after onset. Although it is accepted that immunotherapies for people with MS decrease disease activity, uncertainty regarding their relative safety remains. To compare adverse effects of immunotherapies for people with MS or clinically isolated syndrome (CIS), and to rank these treatments according to their relative risks of adverse effects through network meta-analyses (NMAs). We searched CENTRAL, PubMed, Embase, two other databases and trials registers up to March 2022, together with reference checking and citation searching to identify additional studies. We included participants 18 years of age or older with a diagnosis of MS or CIS, according to any accepted diagnostic criteria, who were included in randomized controlled trials (RCTs) that examined one or more of the agents used in MS or CIS, and compared them versus placebo or another active agent. We excluded RCTs in which a drug regimen was compared with a different regimen of the same drug without another active agent or placebo as a control arm. We used standard Cochrane methods for data extraction and pairwise meta-analyses. For NMAs, we used the netmeta suite of commands in R to fit random-effects NMAs assuming a common between-study variance. We used the CINeMA platform to GRADE the certainty of the body of evidence in NMAs. We considered a relative risk (RR) of 1.5 as a non-inferiority safety threshold compared to placebo. We assessed the certainty of evidence for primary outcomes within the NMA according to GRADE, as very low, low, moderate or high. This NMA included 123 trials with 57,682 participants. Serious adverse events (SAEs) Reporting of SAEs was available from 84 studies including 5696 (11%) events in 51,833 (89.9%) participants out of 57,682 participants in all studies. Based on the absolute frequency of SAEs, our non-inferiority threshold (up to a 50% increased risk) meant that no more than 1 in 18 additional people would have a SAE compared to placebo. Low-certainty evidence suggested that three drugs may decrease SAEs compared to placebo (relative risk [RR], 95% confidence interval [CI]): interferon beta-1a (Avonex) (0.78, 0.66 to 0.94); dimethyl fumarate (0.79, 0.67 to 0.93), and glatiramer acetate (0.84, 0.72 to 0.98). Several drugs met our non-inferiority criterion versus placebo: moderate-certainty evidence for teriflunomide (1.08, 0.88 to 1.31); low-certainty evidence for ocrelizumab (0.85, 0.67 to 1.07), ozanimod (0.88, 0.59 to 1.33), interferon beta-1b (0.94, 0.78 to 1.12), interferon beta-1a (Rebif) (0.96, 0.80 to 1.15), natalizumab (0.97, 0.79 to 1.19), fingolimod (1.05, 0.92 to 1.20) and laquinimod (1.06, 0.83 to 1.34); very low-certainty evidence for daclizumab (0.83, 0.68 to 1.02). Non-inferiority with placebo was not met due to imprecision for the other drugs: low-certainty evidence for cladribine (1.10, 0.79 to 1.52), siponimod (1.20, 0.95 to 1.51), ofatumumab (1.26, 0.88 to 1.79) and rituximab (1.01, 0.67 to 1.52); very low-certainty evidence for immunoglobulins (1.05, 0.33 to 3.32), diroximel fumarate (1.05, 0.23 to 4.69), peg-interferon beta-1a (1.07, 0.66 to 1.74), alemtuzumab (1.16, 0.85 to 1.60), interferons (1.62, 0.21 to 12.72) and azathioprine (3.62, 0.76 to 17.19). Withdrawals due to adverse events Reporting of withdrawals due to AEs was available from 105 studies (85.4%) including 3537 (6.39%) events in 55,320 (95.9%) patients out of 57,682 patients in all studies. Based on the absolute frequency of withdrawals, our non-inferiority threshold (up to a 50% increased risk) meant that no more than 1 in 31 additional people would withdraw compared to placebo. No drug reduced withdrawals due to adverse events when compared with placebo. There was very low-certainty evidence (meaning that estimates are not reliable) that two drugs met our non-inferiority criterion versus placebo, assuming an upper 95% CI RR limit of 1.5: diroximel fumarate (0.38, 0.11 to 1.27) and alemtuzumab (0.63, 0.33 to 1.19). Non-inferiority with placebo was not met due to imprecision for the following drugs: low-certainty evidence for ofatumumab (1.50, 0.87 to 2.59); very low-certainty evidence for methotrexate (0.94, 0.02 to 46.70), corticosteroids (1.05, 0.16 to 7.14), ozanimod (1.06, 0.58 to 1.93), natalizumab (1.20, 0.77 to 1.85), ocrelizumab (1.32, 0.81 to 2.14), dimethyl fumarate (1.34, 0.96 to 1.86), siponimod (1.63, 0.96 to 2.79), rituximab (1.63, 0.53 to 5.00), cladribine (1.80, 0.89 to 3.62), mitoxantrone (2.11, 0.50 to 8.87), interferons (3.47, 0.95 to 12.72), and cyclophosphamide (3.86, 0.45 to 33.50). Eleven drugs may have increased withdrawals due to adverse events compared with placebo: low-certainty evidence for teriflunomide (1.37, 1.01 to 1.85), glatiramer acetate (1.76, 1.36 to 2.26), fingolimod (1.79, 1.40 to 2.28), interferon beta-1a (Rebif) (2.15, 1.58 to 2.93), daclizumab (2.19, 1.31 to 3.65) and interferon beta-1b (2.59, 1.87 to 3.77); very low-certainty evidence for laquinimod (1.42, 1.01 to 2.00), interferon beta-1a (Avonex) (1.54, 1.13 to 2.10), immunoglobulins (1.87, 1.01 to 3.45), peg-interferon beta-1a (3.46, 1.44 to 8.33) and azathioprine (6.95, 2.57 to 18.78); however, very low-certainty evidence is unreliable. Sensitivity analyses including only studies with low attrition bias, drug dose above the group median, or only patients with relapsing remitting MS or CIS, and subgroup analyses by prior disease-modifying treatments did not change these figures. Rankings No drug yielded consistent P scores in the upper quartile of the probability of being better than others for primary and secondary outcomes. We found mostly low and very low-certainty evidence that drugs used to treat MS may not increase SAEs, but may increase withdrawals compared with placebo. The results suggest that there is no important difference in the occurrence of SAEs between first- and second-line drugs and between oral, injectable, or infused drugs, compared with placebo. Our review, along with other work in the literature, confirms poor-quality reporting of adverse events from RCTs of interventions. At the least, future studies should follow the CONSORT recommendations about reporting harm-related issues. To address adverse effects, future systematic reviews should also include non-randomized studies.
Tramacere I ,Virgili G ,Perduca V ,Lucenteforte E ,Benedetti MD ,Capobussi M ,Castellini G ,Frau S ,Gonzalez-Lorenzo M ,Featherstone R ,Filippini G ... - 《Cochrane Database of Systematic Reviews》
被引量: 5 发表:1970年
加载更多
加载更多
加载更多