Pharmacological treatments in panic disorder in adults: a network meta-analysis.
A panic attack is a discrete period of fear or anxiety that has a rapid onset and reaches a peak within 10 minutes. The main symptoms involve bodily systems, such as racing heart, chest pain, sweating, shaking, dizziness, flushing, churning stomach, faintness and breathlessness. Other recognised panic attack symptoms involve fearful cognitions, such as the fear of collapse, going mad or dying, and derealisation (the sensation that the world is unreal). Panic disorder is common in the general population with a prevalence of 1% to 4%. The treatment of panic disorder includes psychological and pharmacological interventions, including antidepressants and benzodiazepines.
To compare, via network meta-analysis, individual drugs (antidepressants and benzodiazepines) or placebo in terms of efficacy and acceptability in the acute treatment of panic disorder, with or without agoraphobia. To rank individual active drugs for panic disorder (antidepressants, benzodiazepines and placebo) according to their effectiveness and acceptability. To rank drug classes for panic disorder (selective serotonin reuptake inhibitors (SSRIs), serotonin-norepinephrine reuptake inhibitors (SNRIs), tricyclic antidepressants (TCAs), mono-amine oxidase inhibitors (MAOIs) and benzodiazepines (BDZs) and placebo) according to their effectiveness and acceptability. To explore heterogeneity and inconsistency between direct and indirect evidence in a network meta-analysis.
We searched the Cochrane Common Mental Disorders Specialised Register, CENTRAL, CDSR, MEDLINE, Ovid Embase and PsycINFO to 26 May 2022.
We included randomised controlled trials (RCTs) of people aged 18 years or older of either sex and any ethnicity with clinically diagnosed panic disorder, with or without agoraphobia. We included trials that compared the effectiveness of antidepressants and benzodiazepines with each other or with a placebo.
Two authors independently screened titles/abstracts and full texts, extracted data and assessed risk of bias. We analysed dichotomous data and continuous data as risk ratios (RRs), mean differences (MD) or standardised mean differences (SMD): response to treatment (i.e. substantial improvement from baseline as defined by the original investigators: dichotomous outcome), total number of dropouts due to any reason (as a proxy measure of treatment acceptability: dichotomous outcome), remission (i.e. satisfactory end state as defined by global judgement of the original investigators: dichotomous outcome), panic symptom scales and global judgement (continuous outcome), frequency of panic attacks (as recorded, for example, by a panic diary; continuous outcome), agoraphobia (dichotomous outcome). We assessed the certainty of evidence using threshold analyses.
Overall, we included 70 trials in this review. Sample sizes ranged between 5 and 445 participants in each arm, and the total sample size per study ranged from 10 to 1168. Thirty-five studies included sample sizes of over 100 participants. There is evidence from 48 RCTs (N = 10,118) that most medications are more effective in the response outcome than placebo. In particular, diazepam, alprazolam, clonazepam, paroxetine, venlafaxine, clomipramine, fluoxetine and adinazolam showed the strongest effect, with diazepam, alprazolam and clonazepam ranking as the most effective. We found heterogeneity in most of the comparisons, but our threshold analyses suggest that this is unlikely to impact the findings of the network meta-analysis. Results from 64 RCTs (N = 12,310) suggest that most medications are associated with either a reduced or similar risk of dropouts to placebo. Alprazolam and diazepam were associated with a lower dropout rate compared to placebo and were ranked as the most tolerated of all the medications examined. Thirty-two RCTs (N = 8569) were included in the remission outcome. Most medications were more effective than placebo, namely desipramine, fluoxetine, clonazepam, diazepam, fluvoxamine, imipramine, venlafaxine and paroxetine, and their effects were clinically meaningful. Amongst these medications, desipramine and alprazolam were ranked highest. Thirty-five RCTs (N = 8826) are included in the continuous outcome reduction in panic scale scores. Brofaromine, clonazepam and reboxetine had the strongest reductions in panic symptoms compared to placebo, but results were based on either one trial or very small trials. Forty-one RCTs (N = 7853) are included in the frequency of panic attack outcome. Only clonazepam and alprazolam showed a strong reduction in the frequency of panic attacks compared to placebo, and were ranked highest. Twenty-six RCTs (N = 7044) provided data for agoraphobia. The strongest reductions in agoraphobia symptoms were found for citalopram, reboxetine, escitalopram, clomipramine and diazepam, compared to placebo. For the pooled intervention classes, we examined the two primary outcomes (response and dropout). The classes of medication were: SSRIs, SNRIs, TCAs, MAOIs and BDZs. For the response outcome, all classes of medications examined were more effective than placebo. TCAs as a class ranked as the most effective, followed by BDZs and MAOIs. SSRIs as a class ranked fifth on average, while SNRIs were ranked lowest. When we compared classes of medication with each other for the response outcome, we found no difference between classes. Comparisons between MAOIs and TCAs and between BDZs and TCAs also suggested no differences between these medications, but the results were imprecise. For the dropout outcome, BDZs were the only class associated with a lower dropout compared to placebo and were ranked first in terms of tolerability. The other classes did not show any difference in dropouts compared to placebo. In terms of ranking, TCAs are on average second to BDZs, followed by SNRIs, then by SSRIs and lastly by MAOIs. BDZs were associated with lower dropout rates compared to SSRIs, SNRIs and TCAs. The quality of the studies comparing antidepressants with placebo was moderate, while the quality of the studies comparing BDZs with placebo and antidepressants was low.
In terms of efficacy, SSRIs, SNRIs (venlafaxine), TCAs, MAOIs and BDZs may be effective, with little difference between classes. However, it is important to note that the reliability of these findings may be limited due to the overall low quality of the studies, with all having unclear or high risk of bias across multiple domains. Within classes, some differences emerged. For example, amongst the SSRIs paroxetine and fluoxetine seem to have stronger evidence of efficacy than sertraline. Benzodiazepines appear to have a small but significant advantage in terms of tolerability (incidence of dropouts) over other classes.
Guaiana G
,Meader N
,Barbui C
,Davies SJ
,Furukawa TA
,Imai H
,Dias S
,Caldwell DM
,Koesters M
,Tajika A
,Bighelli I
,Pompoli A
,Cipriani A
,Dawson S
,Robertson L
... -
《Cochrane Database of Systematic Reviews》
Antidepressants versus placebo for generalised anxiety disorder (GAD).
Generalised anxiety disorder (GAD) is a mental health condition characterised by excessive anxiety and worry about everyday events. GAD is a common disorder and generally affects women twice as often as men. Treatments include various psychological and pharmacological therapies. Among the pharmacological therapies, antidepressants, in particular, selective serotonin reuptake inhibitors (SSRIs) and serotonin-noradrenaline reuptake inhibitors (SNRIs), are commonly used for the treatment of GAD and many studies have shown their benefit over placebo. Only one systematic review and meta-analysis comparing all antidepressants to placebo has been done in the past. Since then, new data on existing antidepressants have emerged and new antidepressants have been introduced. An updated and more comprehensive review is needed to provide a stronger understanding of the efficacy, acceptability, tolerability, and impact on the quality of life of the various types of antidepressants compared to placebo.
To assess the effects of antidepressants in GAD in adults, specifically: to determine the efficacy of antidepressants in alleviating symptoms of GAD compared to placebo and to review the acceptability of antidepressants in GAD in terms of adverse effects, including the general prevalence of adverse effects compared to placebo.
We searched the Cochrane Common Mental Health Disorders (CCMD) register, CENTRAL, MEDLINE, Embase, PsycINFO, and two trials registers in October 2022.
We included randomised controlled trials (RCT) or cluster-RCTs that randomly assigned participants to receive either an antidepressant or placebo for the treatment of GAD. There were no restrictions on dose, frequency, intensity, or duration of treatment. The studies included adults of either sex with a primary diagnosis of GAD and without any serious medical comorbidities. Psychiatric comorbidities were allowed as long as GAD was the primary diagnosis. We excluded studies investigating psychotherapies and those that included participants who had regular use of benzodiazepines. There were no restrictions on setting, country, or language.
Two review authors independently checked eligibility and extracted data following standard Cochrane methodological procedures. We assessed risk of bias using the Cochrane RoB 1 tool. A third review author resolved disagreements between the two primary review authors. We extracted study characteristics, participant characteristics, intervention details, settings, and outcome measures regarding efficacy, acceptability, tolerability, and quality of life. We used GRADE to assess the certainty of the evidence.
We included 37 unique RCTs with 12,226 participants in the review. The studies included adults with moderate-severe GAD and without any serious medical comorbidities. Few studies included participants with secondary psychiatric comorbidities. The double-blind treatment duration ranged from four weeks to 28 weeks. Antidepressants have a benefit over placebo on rate of treatment response measured as a reduction of at least 50% on the Hamilton Anxiety Rating Scale (HAM-A) (risk ratio (RR) 1.41, 95% confidence interval (CI) 1.29 to 1.55; 20 studies, 7267 participants; high-certainty evidence). The magnitude of effect corresponds to a number needed to treat for an additional beneficial outcome (NNTB) of 7 (95% CI 5 to 9). Antidepressants have no difference in acceptability compared to placebo, measured as the number of participants who dropped out during the trial as a proportion of the total number of randomised participants (RR 1.03, 95% CI 0.93 to 1.14; 33 studies, 11,294 participants; high-certainty evidence). Fewer participants dropped out due to a lack of efficacy in the antidepressant group compared to the placebo group (RR 0.41, 95% CI 0.33 to 0.50; 29 studies, 11,007 participants; high-certainty evidence) with an NNTB of 27 (95% CI 24 to 32), and more participants dropped out due to adverse effects in the antidepressant group compared to placebo (RR 2.18, 95% CI 1.81 to 2.61; 32 studies, 11,793 participants; high-certainty evidence) with a number needed to treat for an additional harmful outcome (NNTH) of 17 (95% CI 13 to 112). We observed similar findings when classes of antidepressants were compared with placebo. The certainty of the evidence for the analyses comparing different classes of antidepressants to placebo was high.
This review added to the growing literature on antidepressants in the treatment of GAD. We have high confidence that antidepressants are more effective than placebo at improving treatment response and that antidepressants have similar acceptability to placebo. Fewer participants dropped out due to a lack of efficacy in the antidepressant group compared to the placebo group and more participants dropped out due to adverse effects in the antidepressant group compared to placebo. We are highly confident in this evidence. This review identified some important gaps in the literature on antidepressants for GAD and can be used as a tool to guide future research. Future studies may be more transparent with their methodology and outcome reporting. Future reviews may also include people with comorbidities, and explore other sources of heterogeneity.
Kopcalic K
,Arcaro J
,Pinto A
,Ali S
,Barbui C
,Curatoli C
,Martin J
,Guaiana G
... -
《Cochrane Database of Systematic Reviews》
Topical anti-inflammatory treatments for eczema: network meta-analysis.
Eczema (atopic dermatitis) is the most burdensome skin condition worldwide and cannot currently be prevented or cured. Topical anti-inflammatory treatments are used to control eczema symptoms, but there is uncertainty about the relative effectiveness and safety of different topical anti-inflammatory treatments.
To compare and rank the efficacy and safety of topical anti-inflammatory treatments for people with eczema using a network meta-analysis.
We searched the Cochrane Skin Specialised Register, CENTRAL, MEDLINE, Embase and trial registries on 29 June 2023, and checked the reference lists of included studies.
We included within-participant or between-participant randomised controlled trials (RCTs) in people of any age with eczema of any severity, but excluded trials in clinically infected eczema, seborrhoeic eczema, contact eczema, or hand eczema. We included topical anti-inflammatory treatments used for at least one week, compared with another anti-inflammatory treatment, no treatment, or vehicle/placebo. Vehicle is a 'carrier system' for an active pharmaceutical substance, which may also be used on its own as an emollient for dry skin. We excluded trials of topical antibiotics used alone, complementary therapies, emollients used alone, phototherapy, wet wraps, and systemic treatments.
We used standard Cochrane methods. Primary outcomes were patient-reported eczema symptoms, clinician-reported eczema signs and investigator global assessment. Secondary outcomes were health-related quality of life, long-term control of eczema, withdrawal from treatment/study, and local adverse effects (application-site reactions, pigmentation changes and skin thinning/atrophy were identified as important concerns through patient and public involvement). We used CINeMA to quantify our confidence in the evidence for each outcome.
We included 291 studies involving 45,846 participants with the full spectrum of eczema severity, mainly conducted in high-income countries in secondary care settings. Most studies included adults, with only 31 studies limited to children aged < 12 years. Studies usually included male and female participants, multiple ethnic groups but predominantly white populations. Most studies were industry-funded (68%) or did not report their funding sources/details. Treatment duration and trial participation were a median of 21 and 28 days (ranging from 7 days to 5 years), respectively. Interventions used were topical corticosteroids (TCS) (172), topical calcineurin inhibitors (TCI) (134), phosphodiesterase-4 (PDE-4) inhibitors (55), janus kinase (JAK) inhibitors (30), aryl hydrocarbon receptor activators (10), or other topical agents (21). Comparators included vehicle (170) or other anti-inflammatory treatments. The risk of bias was high in 242 of the 272 (89.0%) trials contributing to data analyses, most commonly due to concerns about selective reporting. Network meta-analysis (NMA) was only possible for short-term outcomes. Patient-reported symptoms NMA of 40 trials (6482 participants) reporting patient-reported symptoms as a binary outcome ranked tacrolimus 0.1% (OR 6.27, 95% CI 1.19 to 32.98), potent TCS (OR 5.99, 95% CI 2.83 to 12.69), and ruxolitinib 1.5% (OR 5.64, 95% CI 1.26 to 25.25) as the most effective, all with low confidence. Mild TCS, roflumilast 0.15%, and crisaborole 2% were the least effective. Class-level sensitivity analysis found potent/very potent TCS had similar effectiveness to potent TCI and was more effective than mild TCI and PDE-4 inhibitors. NMA of 29 trials (3839 participants) reporting patient-reported symptoms as a continuous outcome ranked very potent TCS (SMD -1.99, 95% CI -3.25 to -0.73; low confidence) and tacrolimus 0.03% (SMD -1.57, 95% CI -2.42 to -0.72; moderate confidence) the highest. Direct information for tacrolimus 0.03% was based on one trial of 60 participants at high risk of bias. Roflumilast 0.15%, delgocitinib 0.25% or 0.5%, and tapinarof 1% were the least effective. Class-level sensitivity analysis found potent/very potent TCS had similar effectiveness to potent TCI and JAK inhibitors and mild/moderate TCS was less effective than mild TCI. A further 50 trials (9636 participants) reported patient-reported symptoms as a continuous outcome but could not be included in NMA. Clinician-reported signs NMA of 32 trials (4121 participants) reported clinician signs as a binary outcome and ranked potent TCS (OR 8.15, 95% CI 4.99, 13.57), tacrolimus 0.1% (OR 8.06, 95% CI 3.30, 19.67), ruxolitinib 1.5% (OR 7.72, 95% CI 4.92, 12.10), and delgocitinib 0.5% (OR 7.61, 95% CI 3.72, 15.58) as most effective, all with moderate confidence. Mild TCS, roflumilast 0.15%, crisaborole 2%, and tapinarof 1% were the least effective. Class-level sensitivity analysis found potent/very potent TCS more effective than potent TCI, mild TCI, JAK inhibitors, PDE-4 inhibitors; and mild TCS and PDE-4 inhibitors had similar effectiveness. NMA of 49 trials (5261 participants) reported clinician signs as a continuous outcome and ranked tacrolimus 0.03% (SMD -2.69, 95% CI -3.36, -2.02) and very potent TCS (SMD -1.87, 95% CI -2.69, -1.05) as most effective, both with moderate confidence; roflumilast 0.15%, difamilast 0.3% and tapinarof 1% were ranked as least effective. Direct information for tacrolimus 0.03% was based on one trial in 60 participants with a high risk of bias. For some sensitivity analyses, potent TCS, tacrolimus 0.1%, ruxolitinib 1.5%, delgocitinib 0.5% and delgocitinib 0.25% became some of the most effective treatments. Class-level analysis found potent/very potent TCS had similar effectiveness to potent TCI and JAK inhibitors, and moderate/mild TCS was more effective than mild TCI. A further 100 trials (22,814 participants) reported clinician signs as a continuous outcome but could not be included in NMA. Investigator Global Assessment NMA of 140 trials (23,383 participants) reported IGA as a binary outcome and ranked ruxolitinib 1.5% (OR 9.34, 95% CI 4.8, 18.18), delgocitinib 0.5% (OR 10.08, 95% CI 2.65, 38.37), delgocitinib 0.25% (OR 6.87, 95% CI 1.79, 26.33), very potent TCS (OR 8.34, 95% CI 4.73, 14.67), potent TCS (OR 5.00, 95% CI 3.80, 6.58), and tacrolimus 0.1% (OR 5.06, 95% CI 3.59, 7.13) as most effective, all with moderate confidence. Mild TCS, crisaborole 2%, pimecrolimus 1%, roflumilast 0.15%, difamilast 0.3% and 1%, and tacrolimus 0.03% were the least effective. In a sensitivity analysis of low risk of bias information (12 trials, 1639 participants), potent TCS, delgocitinib 0.5% and delgocitinib 0.25% were most effective, and pimecrolimus 1%, roflumilast 0.15%, difamilast 1% and difamilast 0.3% least effective. Class-level sensitivity analysis found potent/very potent TCS had similar effectiveness to potent TCI and JAK inhibitors and were more effective than PDE-4 inhibitors; mild/moderate TCS were less effective than potent TCI and had similar effectiveness to mild TCI. Longer-term outcomes over 6 to 12 months showed a possible increase in effectiveness for pimecrolimus 1% versus vehicle (4 trials, 2218 participants) in a pairwise meta-analysis, and greater treatment success with mild/moderate TCS than pimecrolimus 1% (based on 1 trial of 2045 participants). Local adverse effects NMA of 83 trials (18,992 participants, 2424 events) reporting application-site reactions ranked tacrolimus 0.1% (OR 2.2, 95% CI 1.53, 3.17; moderate confidence), crisaborole 2% (OR 2.12, 95% CI 1.18, 3.81; high confidence), tacrolimus 0.03% (OR 1.51, 95%CI 1.10, 2.09; low confidence), and pimecrolimus 1% (OR 1.44, 95% CI 1.01, 2.04; low confidence) as most likely to cause site reactions. Very potent, potent, moderate, and mild TCS were least likely to cause site reactions. NMA of eight trials (1786 participants, 3 events) reporting pigmentation changes found no evidence for increased pigmentation changes with TCS and crisaborole 2%, with low confidence for mild, moderate or potent TCS and moderate confidence for crisaborole 2%. NMA of 25 trials (3691 participants, 36 events) reporting skin thinning found no evidence for increased skin thinning with short-term (median 3 weeks, range 1-16 weeks) use of mild TCS (OR 0.72, 95% CI 0.12, 4.31), moderate TCS (OR 0.91, 95% CI 0.16, 5.33), potent TCS (OR 0.96, 95% CI 0.21, 4.43) or very potent TCS (OR 0.88, 95% CI 0.31, 2.49), all with low confidence. Longer-term outcomes over 6 to 60 months showed increased skin thinning with mild to potent TCS versus TCI (3 trials, 4069 participants, 6 events with TCS).
Potent TCS, JAK inhibitors and tacrolimus 0.1% were consistently ranked as amongst the most effective topical anti-inflammatory treatments for eczema and PDE-4 inhibitors as amongst the least effective. Mild TCS and tapinarof 1% were ranked amongst the least effective treatments in three of five efficacy networks. TCI and crisaborole 2% were ranked most likely to cause local application-site reactions and TCS least likely. We found no evidence for increased skin thinning with short-term TCS but an increase with longer-term TCS.
Lax SJ
,Van Vogt E
,Candy B
,Steele L
,Reynolds C
,Stuart B
,Parker R
,Axon E
,Roberts A
,Doyle M
,Chu DK
,Futamura M
,Santer M
,Williams HC
,Cro S
,Drucker AM
,Boyle RJ
... -
《Cochrane Database of Systematic Reviews》