A methodological framework for estimating ambient PM(2.5) particulate matter concentrations in the UK.
作者:
Galán-Madruga D , Broomandi P , Satyanaga A , Jahanbakhshi A , Bagheri M , Fathian A , Sarvestan R , Cárdenas-Escudero J , Cáceres JO , Kumar P , Kim JR
展开
摘要:
收起
展开
DOI:
10.1016/j.jes.2023.11.019
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(101)
参考文献(0)
引证文献(1)
-
Galán-Madruga D ,Broomandi P ,Satyanaga A ,Jahanbakhshi A ,Bagheri M ,Fathian A ,Sarvestan R ,Cárdenas-Escudero J ,Cáceres JO ,Kumar P ,Kim JR ... - 《Journal of Environmental Sciences》
被引量: 1 发表:1970年 -
Near-road ambient air pollution concentrations that are affected by vehicle emissions are typically characterized by substantial spatial variability with respect to distance from the roadway and temporal variability based on the time of day, day of week, and season. The goal of this work is to identify variables that explain either temporal or spatial variability based on case studies for a freeway site and an urban intersection site. The key hypothesis is that dispersion modeling of near-road pollutant concentrations could be improved by adding estimates or indices for site-specific explanatory variables, particularly related to traffic. Based on case studies for a freeway site and an urban intersection site, the specific aims of this project are to (1) develop and test regression models that explain variability in traffic-related air pollutant (TRAP) ambient concentration at two near-roadway locations; (2) develop and test refined proxies for land use, traffic, emissions and dispersion; and (3) prioritize inputs according to their ability to explain variability in ambient concentrations to help focus efforts for future data collection and model development. The key pollutants that are the key focus of this work include nitrogen oxides (NO), carbon monoxide (CO), black carbon (BC), fine particulate matter (PM; PM ≤ 2.5 μm in aerodynamic diameter), ultrafine particles (UFPs; PM ≤ 0.1 μm in aerodynamic diameter), and ozone (O). NO, CO, and BC are tracers of vehicle emissions and dispersion. PM is influenced by vehicle table emissions and regional sources. UFPs are sensitive to primary vehicle emissions. Secondary particles can form near roadways and on regional scales, influencing both PM and UFP concentrations. O concentrations are influenced by interaction with NO near the roadway. Nitrogen dioxide (NO), CO, PM, and O are regulated under the National Ambient Air Quality Standards (NAAQS) because of demonstrated health effects. BC and UFPs are of concern for their potential health effects. Therefore, these pollutants are the focus of this work. The methodological approach includes case studies for which variables are identified and assesses their ability to explain either temporal or spatial variability in pollutant ambient concentrations. The case studies include one freeway location and one urban intersection. The case studies address (1) temporal variability at a fixed monitor 10 meters from a freeway; (2) downwind concentrations perpendicular to the same location; (3) variability in 24-hour average pollutant concentrations at five sites near an urban intersection; and (4) spatiotemporal variability along a walking path near that same intersection. The study boundary encompasses key factors in the continuum from vehicle emissions to near-road exposure concentrations. These factors include land use, transportation infrastructure and traffic control, vehicle mix, vehicle (traffic) flow, on-road emissions, meteorology, transport and evolution (transformation) of primary emissions, and production of secondary pollutants, and their resulting impact on measured concentrations in the near-road environment. We conducted field measurements of land use, traffic, vehicle emissions, and near-road ambient concentrations in the vicinity of two newly installed fixed-site monitors. One is a monitoring station jointly operated by the U.S. Environmental Protection Agency (U.S. EPA) and the North Carolina Department of Environmental Quality (NC DEQ) on I-40 between Airport Boulevard and I-540 in Wake County, North Carolina. The other is a fixed-site monitor for measuring PM at the North Carolina Central University (NCCU) campus on E. Lawson Street in Durham, North Carolina. We refer to these two locations as the freeway site and the urban site, respectively. We developed statistical models for the freeway and urban sites. We quantified land use metrics at each site, such as distances to the nearest bus stop. For the freeway site, we quantified lane-by-lane total vehicle count, heavy vehicle (HV) count, and several vehicle-activity indices that account for distance from each lane to the roadside monitor. For the urban site, we quantified vehicle counts for all 12 turning movements through the intersection. At each site, we measured microscale vehicle tailpipe emissions using a portable emission measurement system. At the freeway site, we measured the spatial gradient of NO, BC, UFPs, and PM, quantified particle size distributions at selected distances from the roadway and assessed partitioning of particles as a function of evolving volatility. We also quantified fleet-average emission factors for several pollutants. At the urban site, we measured daily average concentrations of nitric oxide (NO), NO, O, and PM at five sites surrounding the intersection of interest; we also measured high resolution (1-second to 10-second averages) concentrations of O, PM, and UFPs along a pedestrian transect. At both sites, the Research LINE-source (R-LINE) dispersion model was applied to predict concentration gradients based on the physical dispersion of pollution. Statistical models were developed for each site for selected pollutants. With variables for local wind direction, heavy-vehicle index, temperature, and day type, the multiple coefficient of determination (R) was 0.61 for hourly NO concentrations at the freeway site. An interaction effect of the dispersion model and a real-time traffic index contributed only 24% of the response variance for NO at the freeway site. Local wind direction, measured near the road, was typically more important than wind direction measured some distance away, and vehicle-activity metrics directly related to actual real-time traffic were important. At the urban site, variability in pollutant concentrations measured for a pedestrian walk-along route was explained primarily by real-time traffic metrics, meteorology, time of day, season, and real-world vehicle tailpipe emissions, depending on the pollutant. The regression models explained most of the variance in measured concentrations for BC, PM, UFPs, NO, and NO at the freeway site and for UFPs and O at the urban site pedestrian transect. Among the set of candidate explanatory variables, typically only a few were needed to explain most of the variability in observed ambient concentrations. At the freeway site, the concentration gradients perpendicular to the road were influenced by dilution, season, time of day, and whether the pollutant underwent chemical or physical transformations. The explanatory variables that were useful in explaining temporal variability in measured ambient concentrations, as well as spatial variability at the urban site, were typically localized real-time traffic-volume indices and local wind direction. However, the specific set of useful explanatory variables was site, context (e.g., next to road, quadrants around an intersection, pedestrian transects), and pollutant specific. Among the most novel of the indicators, variability in real-time measured tailpipe exhaust emissions was found to help explain variability in pedestrian transect UFP concentrations. UFP particle counts were very sensitive to real-time traffic indicators at both the freeway and urban sites. Localized site-specific data on traffic and meteorology contributed to explaining variability in ambient concentrations. HV traffic influenced near-road air quality at the freeway site more so than at the urban site. The statistical models typically explained most of the observed variability but were relatively simple. The results here are site-specific and not generalizable, but they are illustrative that near-road air quality can be highly sensitive to localized real-time indicators of traffic and meteorology.
Frey HC ,Grieshop AP ,Khlystov A ,Bang JJ ,Rouphail N ,Guinness J ,Rodriguez D ,Fuentes M ,Saha P ,Brantley H ,Snyder M ,Tanvir S ,Ko K ,Noussi T ,Delavarrafiee M ,Singh S ... - 《-》
被引量: 1 发表:2022年 -
Research in scientific, public health, and policy disciplines relating to the environment increasingly makes use of high-dimensional remote sensing and the output of numerical models in conjunction with traditional observations. Given the public health and resultant public policy implications of the potential health effects of particulate matter (PM*) air pollution, specifically fine PM with an aerodynamic diameter < or = 2.5 pm (PM2.5), there has been substantial recent interest in the use of remote-sensing information, in particular aerosol optical depth (AOD) retrieved from satellites, to help characterize variability in ground-level PM2.5 concentrations in space and time. While the United States and some other developed countries have extensive PM monitoring networks, gaps in data across space and time necessarily occur; the hope is that remote sensing can help fill these gaps. In this report, we are particularly interested in using remote-sensing data to inform estimates of spatial patterns in ambient PM2.5 concentrations at monthly and longer time scales for use in epidemiologic analyses. However, we also analyzed daily data to better disentangle spatial and temporal relationships. For AOD to be helpful, it needs to add information beyond that available from the monitoring network. For analyses of chronic health effects, it needs to add information about the concentrations of long-term average PM2.5; therefore, filling the spatial gaps is key. Much recent evidence has shown that AOD is correlated with PM2.5 in the eastern United States, but the use of AOD in exposure analysis for epidemiologic work has been rare, in part because discrepancies necessarily exist between satellite-retrieved estimates of AOD, which is an atmospheric-column average, and ground-level PM2.5. In this report, we summarize the results of a number of empirical analyses and of the development of statistical models for the use of proxy information, in particular satellite AOD, in predicting PM2.5 concentrations in the eastern United States. We analyzed the spatiotemporal structure of the relationship between PM2.5 and AOD, first using simple correlations both before and after calibration based on meteorology, as well as large-scale spatial and temporal calibration to account for discrepancies between AOD and PM2.5. We then used both raw and calibrated AOD retrievals in statistical models to predict PM2.5 concentrations, accounting for AOD in two ways: primarily as a separate data source contributing a second likelihood to a Bayesian statistical model, as well as a data source on which we could directly regress. Previous consideration of satellite AOD has largely focused on the National Aeronautics and Space Administration (NASA) moderate resolution imaging spectroradiometer (MODIS) and multiangle imaging spectroradiometer (MISR) instruments. One contribution of our work is more extensive consideration of AOD derived from the Geostationary Operational Environmental Satellite East Aerosol/Smoke Product (GOES GASP) AOD and its relationship with PM2.5. In addition to empirically assessing the spatiotemporal relationship between GASP AOD and PM2.5, we considered new statistical techniques to screen anomalous GOES reflectance measurements and account for background surface reflectance. In our statistical work, we developed a new model structure that allowed for more flexible modeling of the proxy discrepancy than previous statistical efforts have had, with a computationally efficient implementation. We also suggested a diagnostic for assessing the scales of the spatial relationship between the proxy and the spatial process of interest (e.g., PM2.5). In brief, we had little success in improving predictions in our eastern-United States domain for use in epidemiologic applications. We found positive correlations of AOD with PM2.5 over time, but less correlation for long-term averages over space, unless we used calibration that adjusted for large-scale discrepancy between AOD and PM2.5 (see sections 3, 4, and 5). Statistical models that combined AOD, PM2.5 observations, and land-use and meteorologic variables were highly predictive of PM2.5 observations held out of the modeling, but AOD added little information beyond that provided by the other sources (see sections 5 and 6). When we used PM2.5 data estimates from the Community Multiscale Air Quality model (CMAQ) as the proxy instead of using AOD, we similarly found little improvement in predicting held-out observations of PM2.5, but when we regressed on CMAQ PM2.5 estimates, the predictions improved moderately in some cases. These results appeared to be caused in part by the fact that large-scale spatial patterns in PM2.5 could be predicted well by smoothing the monitor values, while small-scale spatial patterns in AOD appeared to weakly reflect the variation in PM2.5 inferred from the observations. Using a statistical model that allowed for potential proxy discrepancy at both large and small spatial scales was an important component of our modeling. In particular, when our models did not include a component to account for small-scale discrepancy, predictive performance decreased substantially. Even long-term averages of MISR AOD, considered the best, albeit most sparse, of the AOD products, were only weakly correlated with measured PM2.5 (see section 4). This might have been partly related to the fact that our analysis did not account for spatial variation in the vertical profile of the aerosol. Furthermore, we found evidence that some of the correlation between raw AOD and PM2.5 might have been a function of surface brightness related to land use, rather than having been driven by the detection of aerosol in the AOD retrieval algorithms (see sections 4 and 7). Difficulties in estimating the background surface reflectance in the retrieval algorithms likely explain this finding. With regard to GOES, we found moderate correlations of GASP AOD and PM2.5. The higher correlations of monthly and yearly averages after calibration reflected primarily the improved large-scale correlation, a necessary result of the calibration procedure (see section 3). While the results of this study's GOES reflectance screening and surface reflection correction appeared sensible, correlations of our proposed reflectance-based proxy with PM2.5 were no better than GASP AOD correlations with PM2.5 (see section 7). We had difficulty improving spatial prediction of monthly and yearly average PM2.5 using AOD in the eastern United States, which we attribute to the spatial discrepancy between AOD and measured PM2.5, particularly at smaller scales. This points to the importance of paying attention to the discrepancy structure of proxy information, both from remote-sensing and deterministic models. In particular, important statistical challenges arise in accounting for the discrepancy, given the difficulty in the face of sparse observations of distinguishing the discrepancy from the component of the proxy that is informative about the process of interest. Associations between adverse health outcomes and large-scale variation in PM2.5 (e.g., across regions) may be confounded by unmeasured spatial variation in factors such as diet. Therefore, one important goal was to use AOD to improve predictions of PM2.5 for use in epidemiologic analyses at small-to-moderate spatial scales (within urban areas and within regions). In addition, large-scale PM2.5 variation is well estimated from the monitoring data, at least in the United States. We found little evidence that current AOD products are helpful for improving prediction at small-to-moderate scales in the eastern United States and believe more evidence for the reliability of AOD as a proxy at such scales is needed before making use of AOD for PM2.5 prediction in epidemiologic contexts. While our results relied in part on relatively complicated statistical models, which may be sensitive to modeling assumptions, our exploratory correlation analyses (see sections 3 and 5) and relatively simple regression-style modeling of MISR AOD (see section 4) were consistent with the more complicated modeling results. When assessing the usefulness of AOD in the context of studying chronic health effects, we believe efforts need to focus on disentangling the temporal from the spatial correlations of AOD and PM2.5 and on understanding the spatial scale of correlation and of the discrepancy structure. While our results are discouraging, it is important to note that we attempted to make use of smaller-scale spatial variation in AOD to distinguish spatial variations of relatively small magnitude in long-term concentrations of ambient PM2.5. Our efforts pushed the limits of current technology in a spatial domain with relatively low PM2.5 levels and limited spatial variability. AOD may hold more promise in areas with higher aerosol levels, as the AOD signal would be stronger there relative to the background surface reflectance. Furthermore, for developing countries with high aerosol levels, it is difficult to build statistical models based on PM2.5 measurements and land-use covariates, so AOD may add more incremental information in those contexts. More generally, researchers in remote sensing are involved in ongoing efforts to improve AOD products and develop new approaches to using AOD, such as calibration with model-estimated vertical profiles and the use of speciation information in MISR AOD; these efforts warrant continued investigation of the usefulness of remotely sensed AOD for public health research.
Paciorek CJ ,Liu Y ,HEI Health Review Committee 《-》
被引量: 11 发表:2012年 -
Previous studies have identified associations between traffic exposures and a variety of adverse health effects, but many of these studies relied on proximity measures rather than measured or modeled concentrations of specific air pollutants, complicating interpretability of the findings. An increasing number of studies have used land-use regression (LUR) or other techniques to model small-scale variability in concentrations of specific air pollutants. However, these studies have generally considered a limited number of pollutants, focused on outdoor concentrations (or indoor concentrations of ambient origin) when indoor concentrations are better proxies for personal exposures, and have not taken full advantage of statistical methods for source apportionment that may have provided insight about the structure of the LUR models and the interpretability of model results. Given these issues, the primary objective of our study was to determine predictors of indoor and outdoor residential concentrations of multiple traffic-related air pollutants within an urban area, based on a combination of central site monitoring data; geographic information system (GIS) covariates reflecting traffic and other outdoor sources; questionnaire data reflecting indoor sources and activities that affect ventilation rates; and factor-analytic methods to better infer source contributions. As part of a prospective birth cohort study assessing asthma etiology in urban Boston, we collected indoor and/or outdoor 3-to-4 day samples of nitrogen dioxide (NO2) and fine particulate matter with an aerodynamic diameter or = 2.5 pm (PM2.5) at 44 residences during multiple seasons of the year from 2003 through 2005. We performed reflectance analysis, x-ray fluorescence spectroscopy (XRF), and high-resolution inductively coupled plasma-mass spectrometry (ICP-MS) on particle filters to estimate the concentrations of elemental carbon (EC), trace elements, and water-soluble metals, respectively. We derived multiple indicators of traffic using Massachusetts Highway Department (MHD) data and traffic counts collected outside the residences where the air monitoring was conducted. We used a standardized questionnaire to collect data on home characteristics and occupant behaviors. Additional housing information was collected through property tax records. Ambient concentrations of pollutants as well as meteorological data were collected from centrally located ambient monitors. We used GIS-based LUR models to explain spatial and temporal variability in residential outdoor concentrations of PM2.5, EC, and NO2. We subsequently derived latent-source factors for residential outdoor concentrations using confirmatory factor analysis constrained to nonnegative loadings. We developed LUR models to determine whether GIS covariates and other predictors explain factor variability and thereby support initial factor interpretations. To evaluate indoor concentrations, we developed physically interpretable regression models that explored the relationship between measured indoor and outdoor concentrations, relying on questionnaire data to characterize indoor sources and activities. Because outdoor pollutant concentrations measured directly outside of homes are unlikely to be available for most large epidemiologic studies, we developed regression models to explain indoor concentrations of PM2.5, EC, and NO2 as a function of other, more readily available data: GIS covariates, questionnaire data reflecting both sources and ventilation, and central site monitoring data. As we did for outdoor concentrations, we then derived latent-source factors for residential indoor concentrations and developed regression models explaining variability in these indoor latent-source factors. Finally, to provide insight about the effects of improved characterization of exposures for the results of subsequent epidemiologic investigations, we developed a simulation framework to quantitatively compare the implications of using exposure models derived from validation studies with the use of other surrogate models with varying amounts of measurement error. The concentrations of outdoor PM2.5 were strongly associated with the central site monitor data, whereas EC concentrations showed greater spatial variability, especially during colder months, and were predicted by the length of roadway within 200 m of the home. Outdoor NO2 also showed significant spatial variability, predicted in part by population density and roadway length within 50 m of the home. Our constrained factor analysis of outdoor concentrations produced loadings indicating long-range transport, brake wear and traffic exhaust, diesel exhaust, fuel oil combustion, and resuspended road dust as sources; corresponding LUR models largely corroborated these factor interpretations through covariate significance. For example, long-range transport was predicted by central site PM2.5, and season, brake wear and traffic exhaust and resuspended road dust by traffic and residential density, diesel exhaust by the percentage of diesel traffic on the nearest major road, and fuel oil combustion by population density. Our modeling of the concentrations of indoor pollutants demonstrated substantial variability in indoor-outdoor relationships across constituents, helping to separate constituents dominated by outdoor sources (e.g., S, Se, and V) from those dominated by indoor sources (e.g., Ca and Si). Regression models indicated that indoor PM2.5 was not influenced substantially by local traffic but had significant indoor sources (cooking activity and occupant density), while EC was associated with distance to the nearest designated truck route, and NO2 was associated with both traffic density within 50 m of the home and gas stove usage. Our constrained factor analysis of indoor concentrations helped to separate outdoor-dominated factors from indoor-dominated factors, though some factors appeared to be influenced by both indoor and outdoor sources. Subsequent factor analyses of the indoor-attributable fractions from indoor-outdoor regression models provided generally consistent interpretations of indoor-dominated factors. The use of regression models on indoor factors demonstrated the limited predictive power of questionnaire data related to indoor sources, but reinforced the viability of modeling indoor concentrations of pollutants of ambient origin. In spite of the relatively weak predictive power of some of the indoor-concentration regression models, our epidemiologic simulations illustrated that exposure models with fairly modest R2 values (in the range of 0.3 through 0.4, corresponding with the regression models for PM2.5 and NO2) yielded substantial improvements in epidemiologic study performance relative to the use of exposure proxies that could be applied in the absence of validation studies. In spite of limitations related to sample size and available covariate data, our study demonstrated significant outdoor spatial variability within an urban area in NO2 and in several constituents of airborne particles. LUR techniques combined with constrained factor analysis helped to disentangle the contributions to temporal variability of local, long-range transport, and other sources, ultimately allowing exposures from defined source categories to be investigated in epidemiologic studies. For the indoor residential environment, we demonstrated substantial variability in indoor-outdoor relationships among particle constituents; then, using information from public databases and focused questionnaire data, we were able to predict indoor concentrations for a subset of key pollutants. Constrained factor analysis methods applied to the indoor environment helped to separate indoor sources from outdoor sources. The corresponding indoor regression models had limited predictive power, reinforcing the complexity of characterizing the indoor environment when only limited information about key predictors is available. This finding also underscores the likelihood that these regression models might characterize indoor concentrations of pollutants with ambient origins better than they can the indoor concentrations from all sources. Our findings provide direction for future studies characterizing indoor exposure sources and patterns, and our epidemiologic simulation reinforced the importance of reducing measurement error in a context where many traffic-related air pollutants are influenced by both indoor and outdoor sources. The combination of analytical techniques used in our study could ultimately allow for more refined exposure characterization and evaluation of the relative contributions of various sources to health outcomes in epidemiologic studies.
Levy JI ,Clougherty JE ,Baxter LK ,Houseman EA ,Paciorek CJ ,HEI Health Review Committee ... - 《-》
被引量: 12 发表:2010年 -
Effects of concentrated ambient particles on normal and hypersecretory airways in rats.
Harkema JR ,Keeler G ,Wagner J ,Morishita M ,Timm E ,Hotchkiss J ,Marsik F ,Dvonch T ,Kaminski N ,Barr E ... - 《-》
被引量: 21 发表:2004年
加载更多
加载更多
加载更多