Fingolimod alleviates type 2 diabetes associated cognitive decline by regulating autophagy and neuronal apoptosis via AMPK/mTOR pathway.

来自 PUBMED

作者:

Li JYin MWang ZXiong YFang XFang H

展开

摘要:

This study aimed to reveal the role of fingolimod (FTY720) in mice with type 2 diabetes-associated cognitive decline and explore its potential neuroprotective mechanism. Mice were divided into five groups: normal control, normal control + FTY720 (1.0 mg/kg/day), type 2 diabetes mellitus, type 2 diabetes mellitus + low-dose FTY720 (0.5 mg/kg/day), and type 2 diabetes mellitus + high-dose FTY720 (1.0 mg/kg/day). Different doses of FTY720 were administered daily for 8 weeks after the induction of type 2 diabetes using a four-week high-fat diet feeding combined with continuous low-dose intraperitoneal injections of streptozotocin. After 8 weeks of treatment, the body weights and fasting blood glucose levels of mice from the five groups were compared. Morris water maze and new object recognition tests were used to evaluate cognitive function. Pathological changes in the hippocampal CA1 region were observed using haematoxylin-eosin and Nissl staining, and the ultrastructure of the hippocampal neurones was assessed using transmission electron microscopy. The expression levels of autophagy- and apoptosis-related proteins, such as LC3, Beclin-1, P62, Bax, and Bcl-2, in the mice hippocampus were detected by western blotting. Simultaneously, AMPK/mTOR signaling pathway proteins were detected to understand the potential mechanism. FTY720 had no significant effect on the body weight or fasting blood glucose levels in mice with type 2 diabetes. However, both FTY720 doses improved the cognitive function and hippocampal damage. In addition, the results suggested that FTY720 dramatically decreased P62 and Bax levels and increased LC3 II/LC3 I ratio, Beclin-1, and Bcl-2 expression in the hippocampus of type 2 diabetic mice. FTY720 also affected the expression of the AMPK/mTOR signaling pathway. Thus, FTY720 improved cognitive function and hippocampal pathological changes in type 2 diabetic mice without affecting fasting blood glucose levels. Our results show that FTY720 may exert neuroprotective effects in vivo by enhancing hippocampal autophagy and inhibiting apoptosis via the AMPK/mTOR signaling pathway.

收起

展开

DOI:

10.1016/j.brainres.2024.149241

被引量:

2

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(100)

参考文献(0)

引证文献(2)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读