-
Tangzhiqing decoction attenuates cognitive dysfunction of mice with type 2 diabetes by regulating AMPK/mTOR autophagy signaling pathway.
Yao W
,Zhang Q
,Zhao Y
,Xu X
,Zhang S
,Wang X
... -
《-》
-
Tanshinone IIA inhibited intermittent hypoxia induced neuronal injury through promoting autophagy via AMPK-mTOR signaling pathway.
Chronic intermittent hypoxia (CIH) is the primary pathophysiological process of obstructive sleep apnea (OSA) and is closely linked to neurocognitive dysfunction. Tanshinone IIA (Tan IIA) is extracted from Salvia miltiorrhiza Bunge and used in Traditional Chinese Medicine (TCM) to improve cognitive impairment. Studies have shown that Tan IIA has anti-inflammatory, anti-oxidant, and anti-apoptotic properties and provides protection in intermittent hypoxia (IH) conditions. However, the specific mechanism is still unclear.
To assess the protective effect and mechanism of Tan IIA treatment on neuronal injury in HT22 cells exposed to IH.
The study established an HT22 cell model exposed to IH (0.1% O2 3 min/21% O2 7 min for six cycles/h). Cell viability was determined using the Cell Counting Kit-8, and cell injury was determined using the LDH release assay. Mitochondrial damage and cell apoptosis were observed using the Mitochondrial Membrane Potential and Apoptosis Detection Kit. Oxidative stress was assessed using DCFH-DA staining and flow cytometry. The level of autophagy was assessed using the Cell Autophagy Staining Test Kit and transmission electron microscopy (TEM). Western blot was used to detect the expressions of the AMPK-mTOR pathway, LC3, P62, Beclin-1, Nrf2, HO-1, SOD2, NOX2, Bcl-2/Bax, and caspase-3.
The study showed that Tan IIA significantly improved HT22 cell viability under IH conditions. Tan IIA treatment improved mitochondrial membrane potential, decreased cell apoptosis, inhibited oxidative stress, and increased autophagy levels in HT22 cells under IH conditions. Furthermore, Tan IIA increased AMPK phosphorylation and LC3II/I, Beclin-1, Nrf2, HO-1, SOD2, and Bcl-2/Bax expressions, while decreasing mTOR phosphorylation and NOX2 and cleaved caspase-3/caspase-3 expressions.
The study suggested that Tan IIA significantly ameliorated neuronal injury in HT22 cells exposed to IH. The neuroprotective mechanism of Tan IIA may mainly be related to inhibiting oxidative stress and neuronal apoptosis by activating the AMPK/mTOR autophagy pathway under IH conditions.
Si J
,Liu B
,Qi K
,Chen X
,Li D
,Yang S
,Ji E
... -
《-》
-
Huang-Lian-Jie-Du decoction attenuates cognitive dysfunction of rats with type 2 diabetes by regulating autophagy and NLRP3 inflammasome activation.
Huang-Lian-Jie-Du decoction (HLJDD) is a traditional Chinese formula that is efficacious in treating diabetes mellitus, Alzheimer's disease, and diabetic encephalopathy; the underlying mechanisms of HLJDD in diabetes-associated cognitive dysfunction remain unclear.
This study investigated the neuroprotective effects of HLJDD on cognitive function, and the possible underlying mechanisms in type 2 diabetes mellitus (T2DM) in a rat model of cognitive impairment.
Twelve active ingredients in HLJDD were detected using high-performance liquid chromatography analysis. An animal model of cognitive dysfunction in T2DM was induced via a high-sugar and high-fat diet combined with a low dose of streptozotocin. Sprague-Dawley rats were randomly divided into six groups: control, T2DM, metformin (0.34 g/kg/day), and HLJDD groups (3, 1.5, and 0.75 g/kg/day). All treatments were intragastrically administrated for nine continuous weeks after the development of T2DM. Body weight, food and water intake, fasting blood glucose, insulin sensitivity, and blood lipid levels were measured. Spatial learning and memory of the rats were assessed using the Morris water maze test. Hematoxylin and eosin and Nissl staining were performed to evaluate neuronal morphology and vitality. Glutathione, malondialdehyde, and superoxide dismutase levels were measured to determine the level of oxidative stress in the hippocampus. Transmission electron microscopy was performed to observe the synaptic morphology and structure of hippocampal neurons. IL-1β levels in the hippocampus and cerebrospinal fluid were determined. The protein expression of NLRP3, cleaved caspase-1, mature IL-1β, ATG7, P62, LC3, and brain-derived neurotrophic factor (BDNF) was determined using western blotting and immunofluorescence analysis.
HLJDD attenuated cognitive dysfunction in rats with T2DM as shown by the decreased escape latency, increased times crossing the platform and time spent in the target quadrant in the Morris water maze test (P < 0.05), improvement in hippocampal histopathological changes, and an elevated level of cell vitality. HLJDD treatment also reduced blood glucose and lipid levels, ameliorated oxidative stress, and downregulated IL-1β expression in the hippocampus and cerebrospinal fluid (P < 0.05). Moreover, HLJDD enhanced BDNF, ATG7, and LC3 protein expression and significantly inhibited the expression of P62, NLRP3, cleaved caspase-1, and mature IL-1β in the hippocampal CA1 region (P < 0.05). Immunofluorescence results further confirmed that the fluorescence intensity of NLRP3 and P62 in the hippocampus decreased after HLJDD intervention (P < 0.05).
HLJDD ameliorated cognitive dysfunction in T2DM rats. The neuroprotective effect is exerted via the modulation of glucose and lipid metabolism, upregulation of autophagy, and inhibition of NLRP3 inflammasome signaling pathway.
Tian R
,Liu X
,Jing L
,Yang L
,Xie N
,Hou Y
,Tao H
,Tao Y
,Wu J
,Meng X
... -
《-》
-
Shikonin suppresses rheumatoid arthritis by inducing apoptosis and autophagy via modulation of the AMPK/mTOR/ULK-1 signaling pathway.
The overproliferation of fibroblast-like synoviocytes (FLS) contributes to synovial hyperplasia, a pivotal pathological feature of rheumatoid arthritis (RA). Shikonin (SKN), the active compound from Lithospermum erythrorhizon, exerts anti-RA effects by diverse means. However, further research is needed to confirm SKN's in vitro and in vivo anti-proliferative functions and reveal the underlying specific molecular mechanisms.
This study revealed SKN's anti-proliferative effects by inducing both apoptosis and autophagic cell death in RA FLS and adjuvant-induced arthritis (AIA) rat synovium, with involvement of regulating the AMPK/mTOR/ULK-1 pathway.
SKN's influences on RA FLS were assessed for proliferation, apoptosis, and autophagy with immunofluorescence staining (Ki67, LC3B, P62), EdU incorporation assay, staining assays of Hoechst, Annexin V-FITC/PI, and JC-1, transmission electron microscopy, mCherry-GFP-LC3B puncta assay, and western blot. In AIA rats, SKN's anti-arthritic effects were assessed, and its impacts on synovial proliferation, apoptosis, and autophagy were studied using Ki67 immunohistochemistry, TUNEL, and western blot. The involvement of AMPK/mTOR/ULK-1 pathway was examined via western blot.
SKN suppressed RA FLS proliferation with reduced cell viability and decreased Ki67-positive and EdU-positive cells. SKN promoted RA FLS apoptosis, as evidenced by apoptotic nuclear fragmentation, increased Annexin V-FITC/PI-stained cells, reduced mitochondrial potential, elevated Bax/Bcl-2 ratio, and increased cleaved-caspase 3 and cleaved-PARP protein levels. SKN also enhanced RA FLS autophagy, featuring increased LC3B, reduced P62, autophagosome formation, and activated autophagic flux. Autophagy inhibition by 3-MA attenuated SKN's anti-proliferative roles, implying that SKN-induced autophagy contributes to cell death. In vivo, SKN mitigated the severity of rat AIA while also reducing Ki67 expression, inducing apoptosis, and enhancing autophagy within AIA rat synovium. Mechanistically, SKN modulated the AMPK/mTOR/ULK-1 pathway in RA FLS and AIA rat synovium, as shown by elevated P-AMPK and P-ULK-1 expression and decreased P-mTOR expression. This regulation was supported by the reversal of SKN's in vitro and in vivo effects upon co-administration with the AMPK inhibitor compound C.
SKN exerted in vitro and in vivo anti-proliferative properties by inducing apoptosis and autophagic cell death via modulating the AMPK/mTOR/ULK-1 pathway. Our study revealed novel molecular mechanisms underlying SKN's anti-RA effects.
Wang XH
,Shen CP
,Wang TT
,Huang Y
,Jin Y
,Zhou MY
,Zhang MY
,Gu SL
,Wang MQ
,Liu ZC
,Li R
,Cai L
... -
《-》
-
Liraglutide ameliorates cognitive decline by promoting autophagy via the AMP-activated protein kinase/mammalian target of rapamycin pathway in a streptozotocin-induced mouse model of diabetes.
Diabetic cognitive dysfunction has gained widespread attention for its deleterious impact on individuals with diabetes. However, few clinical interventions are available to prevent the disorder. The glucagon-like peptide-1 analog liraglutide exerts neuroprotective effects in several models of neurodegenerative diseases. We investigated the effect of liraglutide pretreatment on diabetes-induced cognitive decline and explored the underlying mechanisms in vivo and in vitro. Liraglutide pretreatment prevented diabetes-induced cognitive impairment as assessed by the Morris Water Maze test, and alleviated neuronal injuries and ultrastructural damage to synapses in the hippocampal CA1 region. Furthermore, liraglutide promoted autophagy as indicated by enhanced expression of the autophagy markers Microtubule-associated protein 1 light chain 3 (LC3)-II and Beclin 1, decreased expression of p62, and increased formation of autophagic vacuoles and LC3-II aggregates. In vitro, liraglutide treatment elevated phosphorylated (p)-AMP-activated protein kinase (AMPK) levels and reduced p-mammalian target of rapamycin (p-mTOR) expression. Additionally, the AMPK inhibitor Compound C exhibited an inhibitory effect on liraglutide-induced increased LC3-II expression and p62 degradation. Liraglutide exhibits neuroprotective effects against diabetes-induced hippocampal neuronal injuries and cognitive impairment by promoting autophagy via the AMPK/mTOR pathway.
Kong FJ
,Wu JH
,Sun SY
,Ma LL
,Zhou JQ
... -
《-》