Differentiating nontuberculous mycobacterium pulmonary disease from pulmonary tuberculosis through the analysis of the cavity features in CT images using radiomics.
To differentiate nontuberculous mycobacteria (NTM) pulmonary diseases from pulmonary tuberculosis (PTB) by analyzing the CT radiomics features of their cavity.
73 patients of NTM pulmonary diseases and 69 patients of PTB with the cavity in Shandong Province Chest Hospital and Qilu Hospital of Shandong University were retrospectively analyzed. 20 patients of NTM pulmonary diseases and 20 patients of PTB with the cavity in Jinan Infectious Disease Hospitall were collected for external validation of the model. 379 cavities as the region of interesting (ROI) from chest CT images were performed by 2 experienced radiologists. 80% of cavities were allocated to the training set and 20% to the validation set using a random number generated by a computer. 1409 radiomics features extracted from the Huiying Radcloud platform were used to analyze the two kinds of diseases' CT cavity characteristics. Feature selection was performed using analysis of variance (ANOVA) and least absolute shrinkage and selection operator (LASSO) methods, and six supervised learning classifiers (KNN, SVM, XGBoost, RF, LR, and DT models) were used to analyze the features.
29 optimal features were selected by the variance threshold method, K best method, and Lasso algorithm.and the ROC curve values are obtained. In the training set, the AUC values of the six models were all greater than 0.97, 95% CI were 0.95-1.00, the sensitivity was greater than 0.92, and the specificity was greater than 0.92. In the validation set, the AUC values of the six models were all greater than 0.84, 95% CI were 0.76-1.00, the sensitivity was greater than 0.79, and the specificity was greater than 0.79. In the external validation set, The AUC values of the six models were all greater than 0.84, LR classifier has the highest precision, recall and F1-score, which were 0.92, 0.94, 0.93.
The radiomics features extracted from cavity on CT images can provide effective proof in distinguishing the NTM pulmonary disease from PTB, and the radiomics analysis shows a more accurate diagnosis than the radiologists. Among the six classifiers, LR classifier has the best performance in identifying two diseases.
Yan Q
,Wang W
,Zhao W
,Zuo L
,Wang D
,Chai X
,Cui J
... -
《-》
A radiomics model utilizing CT for the early detection and diagnosis of severe community-acquired pneumonia.
Community-Acquired Pneumonia (CAP) remains a significant global health concern, with a subset of cases progressing to Severe Community-Acquired Pneumonia (SCAP). This study aims to develop and validate a CT-based radiomics model for the early detection of SCAP to enable timely intervention and improve patient outcomes.
A retrospective study was conducted on 115 CAP and SCAP patients at Southern Medical University Shunde Hospital from January to December 2021. Using the Pyradiomics package, 107 radiomic features were extracted from CT scans, refined via intra-class and inter-class correlation coefficients, and narrowed down using the Least Absolute Shrinkage and Selection Operator (LASSO) regression model. The predictive performance of the radiomics-based model was assessed through receiver operating characteristic (ROC) analysis, employing machine learning classifiers such as k-Nearest Neighbors (KNN), Support Vector Machine (SVM), Logistic Regression (LR), and Random Forest (RF), trained and validated on datasets split 7:3, with a training set (n = 80) and a validation set (n = 35).
The radiomics model exhibited robust predictive performance, with the RF classifier achieving superior precision and accuracy compared to LR, SVM, and KNN classifiers. Specifically, the RF classifier demonstrated a precision of 0.977 (training set) and 0.833 (validation set), as well as an accuracy of 0.925 (training set) and 0.857 (validation set), suggesting its superior performance in both metrics. Decision Curve Analysis (DCA) was utilized to evaluate the clinical efficacy of the RF classifier, demonstrating a favorable net benefit within the threshold ranges of 0.1 to 0.8 for the training set and 0.2 to 0.7 for the validation set.
The radiomics model developed in this study shows promise for early SCAP detection and can improve clinical decision-making.
Jiang J
,Chen S
,Zhang S
,Zeng Y
,Liu J
,Lei W
,Liu X
,Chen X
,Xiao Q
... -
《BMC MEDICAL IMAGING》
Development and Validation of Contrast-Enhanced CT-Based Deep Transfer Learning and Combined Clinical-Radiomics Model to Discriminate Thymomas and Thymic Cysts: A Multicenter Study.
This study aims to evaluate the feasibility and effectiveness of deep transfer learning (DTL) and clinical-radiomics in differentiating thymoma from thymic cysts.
Clinical and imaging data of 196 patients pathologically diagnosed with thymoma and thymic cysts were retrospectively collected from center 1. (training cohort: n = 137; internal validation cohort: n = 59). An independent external validation cohort comprised 68 thymoma and thymic cyst patients from center 2. Region of interest (ROI) delineation was performed on contrast-enhanced chest computed tomography (CT) images, and eight DTL models including Densenet 169, Mobilenet V2, Resnet 101, Resnet 18, Resnet 34, Resnet 50, Vgg 13, Vgg 16 were constructed. Radiomics features were extracted from the ROI on the CT images of thymoma and thymic cyst patients, and feature selection was performed using intra-observer correlation coefficient (ICC), Spearman correlation analysis, and least absolute shrinkage and selection operator (LASSO) algorithm. Univariate analysis and multivariable logistic regression (LR) were used to select clinical-radiological features. Six machine learning classifiers, including LR, support vector machine (SVM), k-nearest neighbors (KNN), Light Gradient Boosting Machine (LightGBM), Adaptive Boosting (AdaBoost), and Multilayer Perceptron (MLP), were used to construct Radiomics and Clinico-radiologic models. The selected features from the Radiomics and Clinico-radiologic models were fused to build a Combined model. Receiver operating characteristic curve (ROC), calibration curve, and decision curve analysis (DCA) were used to evaluate the discrimination, calibration, and clinical utility of the models, respectively. The Delong test was used to compare the AUC between different models. K-means clustering was used to subdivide the lesions of thymomas or thymic cysts into subregions, and traditional radiomics methods were used to extract features and compare the ability of Radiomics and DTL models to reflect intratumoral heterogeneity using correlation analysis.
The Densenet 169 based on DTL performed the best, with AUC of 0.933 (95% CI: 0.875-0.991) in the internal validation cohort and 0.962 (95% CI: 0.923-1.000) in the external validation cohort. The AdaBoost classifier achieved AUC of 0.965 (95% CI: 0.923-1.000) and 0.959 (95% CI: 0.919-1.000) in the internal and external validation cohorts, respectively, for the Radiomics model. The LightGBM classifier achieved AUC of 0.805 (95% CI: 0.690-0.920) and 0.839 (95% CI: 0.736-0.943) in the Clinico-radiologic model. The AUC of the Combined model in the internal and external validation cohorts was 0.933 (95% CI: 0.866-1.000) and 0.945 (95% CI: 0.897-0.994), respectively. The results of the Delong test showed that the Radiomics model, DTL model, and Combined model outperformed the Clinico-radiologic model in both internal and external validation cohorts (p-values were 0.002, 0.004, and 0.033 in the internal validation cohort, while in the external validation cohort, the p-values were 0.014, 0.006, and 0.015, respectively). But there was no statistical difference in performance among the three models (all p-values <0.05). Correlation analysis showed that radiomics performed better than DTL in quantifying intratumoral heterogeneity differences between thymoma and thymic cysts.
The developed DTL model and the Combined model based on radiomics and clinical-radiologic features achieved excellent diagnostic performance in differentiating thymic cysts from thymoma. They can serve as potential tools to assist clinical decision-making, particularly when endoscopic biopsy carries a high risk.
Yang Y
,Cheng J
,Peng Z
,Yi L
,Lin Z
,He A
,Jin M
,Cui C
,Liu Y
,Zhong Q
,Zuo M
... -
《-》