Differentiating nontuberculous mycobacterium pulmonary disease from pulmonary tuberculosis through the analysis of the cavity features in CT images using radiomics.

来自 PUBMED

作者:

Yan QWang WZhao WZuo LWang DChai XCui J

展开

摘要:

To differentiate nontuberculous mycobacteria (NTM) pulmonary diseases from pulmonary tuberculosis (PTB) by analyzing the CT radiomics features of their cavity. 73 patients of NTM pulmonary diseases and 69 patients of PTB with the cavity in Shandong Province Chest Hospital and Qilu Hospital of Shandong University were retrospectively analyzed. 20 patients of NTM pulmonary diseases and 20 patients of PTB with the cavity in Jinan Infectious Disease Hospitall were collected for external validation of the model. 379 cavities as the region of interesting (ROI) from chest CT images were performed by 2 experienced radiologists. 80% of cavities were allocated to the training set and 20% to the validation set using a random number generated by a computer. 1409 radiomics features extracted from the Huiying Radcloud platform were used to analyze the two kinds of diseases' CT cavity characteristics. Feature selection was performed using analysis of variance (ANOVA) and least absolute shrinkage and selection operator (LASSO) methods, and six supervised learning classifiers (KNN, SVM, XGBoost, RF, LR, and DT models) were used to analyze the features. 29 optimal features were selected by the variance threshold method, K best method, and Lasso algorithm.and the ROC curve values are obtained. In the training set, the AUC values of the six models were all greater than 0.97, 95% CI were 0.95-1.00, the sensitivity was greater than 0.92, and the specificity was greater than 0.92. In the validation set, the AUC values of the six models were all greater than 0.84, 95% CI were 0.76-1.00, the sensitivity was greater than 0.79, and the specificity was greater than 0.79. In the external validation set, The AUC values of the six models were all greater than 0.84, LR classifier has the highest precision, recall and F1-score, which were 0.92, 0.94, 0.93. The radiomics features extracted from cavity on CT images can provide effective proof in distinguishing the NTM pulmonary disease from PTB, and the radiomics analysis shows a more accurate diagnosis than the radiologists. Among the six classifiers, LR classifier has the best performance in identifying two diseases.

收起

展开

DOI:

10.1186/s12890-021-01766-2

被引量:

11

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(123)

参考文献(36)

引证文献(11)

来源期刊

BMC Pulmonary Medicine

影响因子:3.317

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读