Integrating meta-heuristic with named data networking for secure edge computing in IoT enabled healthcare monitoring system.

来自 PUBMED

作者:

Manogaran NNandagopal MAbi NESeerangan KBalusamy BSelvarajan S

展开

摘要:

The advancement in technology, with the "Internet of Things (IoT) is continuing a crucial task to accomplish distance medical care observation, where the effective and secure healthcare information retrieval is complex. However, the IoT systems have restricted resources hence it is complex to attain effective and secure healthcare information acquisition. The idea of smart healthcare has developed in diverse regions, where small-scale implementations of medical facilities are evaluated. In the IoT-aided medical devices, the security of the IoT systems and related information is highly essential on the other hand, the edge computing is a significant framework that rectifies their processing and computational issues. The edge computing is inexpensive, and it is a powerful framework to offer low latency information assistance by enhancing the computation and the transmission speed of the IoT systems in the medical sectors. The main intention of this work is to design a secure framework for Edge computing in IoT-enabled healthcare systems using heuristic-based authentication and "Named Data Networking (NDN)". There are three layers in the proposed model. In the first layer, many IoT devices are connected together, and using the cluster head formation, the patients are transmitting their data to the edge cloud layer. The edge cloud layer is responsible for storage and computing resources for rapidly caching and providing medical data. Hence, the patient layer is a new heuristic-based sanitization algorithm called Revised Position of Cat Swarm Optimization (RPCSO) with NDN for hiding the sensitive data that should not be leaked to unauthorized users. This authentication procedure is adopted as a multi-objective function key generation procedure considering constraints like hiding failure rate, information preservation rate, and degree of modification. Further, the data from the edge cloud layer is transferred to the user layer, where the optimal key generation with NDN-based restoration is adopted, thus achieving efficient and secure medical data retrieval. The framework is evaluated quantitatively on diverse healthcare datasets from University of California (UCI) and Kaggle repository and experimental analysis shows the superior performance of the proposed model in terms of latency and cost when compared to existing solutions. The proposed model performs the comparative analysis of the existing algorithms such as Cat Swarm Optimization (CSO), Osprey Optimization Algorithm (OOA), Mexican Axolotl Optimization (MAO), Single candidate optimizer (SCO). Similarly, the cryptography tasks like "Rivest-Shamir-Adleman (RSA), Advanced Encryption Standard (AES), Elliptic Curve Cryptography (ECC), and Data sanitization and Restoration (DSR) are applied and compared with the RPCSO in the proposed work. The results of the proposed model is compared on the basis of the best, worst, mean, median and standard deviation. The proposed RPCSO outperforms all other models with values of 0.018069361, 0.50564046, 0.112643119, 0.018069361, 0.156968355 and 0.283597992, 0.467442652, 0.32920734, 0.328581887, 0.063687386 for both dataset 1 and dataset 2 respectively.

收起

展开

DOI:

10.1038/s41598-024-71506-z

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(164)

参考文献(2)

引证文献(0)

来源期刊

Scientific Reports

影响因子:4.991

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读